TA130 - ALGORITMOS Y PROGRAMACION

Notas de TA130

SEBASTIAN SANTISI

primer borrador!
2° cuatrimestre de 2024

1“Primer borrador”: Este texto fue escrito en una pasada de punta a punta. No fue releido de forma
critica, no se verifico la sintaxis, gramatica, ortografia, ni mucho menos los ejemplos en cédigo, tampoco
se incluyeron graficos, ni tablas, ni resimenes de capitulo, ni referencias a la biblioteca. Este texto es la
primera estructura de una obra que se va a ampliar, completar y emprolijar.

Copyright (© 2024, 2025, Sebastidn Santisi <ssantisi@fi.uba.ar>
http://algoritmos9511.gitlab.io

indice general

. Introduccién

1.1. Algoritmos y programacién
1.2. Procesadores y programaciono
1.3. Ellenguaje de programacion C
14. Elholamundo.
1.5. Funciones

. Sintaxis béasica de C

2.1. Identificadores e e
2.2, BEXPresiones
23. Operadores
2.4. Precedenciay asociatividad. L o 0oL
2.5. Instrucciones e e e e e e e e e
2.6. Declaraciéon de variables
2.7. Declaracion de funciones e
2.8. Comentarios e e e e

. Datos

3.1. Datosenlamemoria
3.2. Declaracion deuna variable
33. TiposdeC e
3.4. Literales e e e e e
3.5. Operaciébnentretipos.
3.6. Conversién explicitade tipos
3.7. Redefiniciéndetipos
38, printf() . . .

. El proceso de compilacién

4.1. Interpretando la salida del compilador
4.2. Pardmetros del compilador L o oL L
43. Constantes e

. Control de flujo

51. Elciclowhile e
52. Bloques
53. Elciclofor e
54. Elciclodo-while
55. Booleanos
56. Elcondicional if
5.7. Earlyreturni
5.8. Funciones y variables booleanas

O 0 NI 3

10

13
13
13
14
15
16
16
17
17

INDICE GENERAL

INDICE GENERAL

10.

11.

59. breakycontinue
5.10. El condicional switch
5.11. El operador condicional L o oL
512, 80T0 . .

Arreglos

6.1. Lamemoriadelosarreglos,
6.2. Eltiposizet
6.3. El problema del sizeof delosarreglos
6.4. Arreglos multidimensionales
6.5. Arreglos de largo variable (VLA) Lo L
6.6. Cadenasdecaracteres
6.7. Encabezado string.h
6.8. Entradaysalida (I/O)

Alcance de variables

71. Globalesylocales
72. Lapiladeejecucion
7.3. Paradigma procedural L

Punteros

8.1. Introduccidn e
8.2. Nomenclatura e
8.3. Devolver valores mediante punteros
8.4. Punteros aliniciodeunarreglo.
8.5. Aritméticadepunteros
8.6. Lamemoria “data”
8.7. Punterosa void e e e e e e
88. ElpunteroNULL it
8.9. Punterosapunteros e
8.10. Matrices e e e e e e e e
8.11. Punteros a funciones

Estructuras y tipos enumerativos

9.1. Estructuras e
9.2. Tiposenumerativos
93. Tablasdebtsqueda

Manejo de bits

Memoria dindmica

11.1. Introduccidn e
11.2. Elheap o
11.3. malloc() yfree(D e
11.4. Pérdidas dememoria e e e e e e
11.5. Valgrind L
11.6. realloc() o i e e e e e e e e
11.7.Casosdeborde e
11.8. Matrices dindmicas v v it e e e e e e e e

44
45
46
47
48
50
51
52
52

56
56
57
60

62
62
63
63
65
66
67
68
70
70
71
72

76
76
80
80

81

NOTAS DE TA130 SEBASTIAN SANTISI

12.

13.

14.

15.

16.

17.

18.

Contratos 90
12.1. Documentacion e e e e e e e e e 90
12.2. Autodocumentacion e e e 90
12.3. Contratos o e e e e e e 91
124, assert () . . o o o e e e e e 92
12.5. Invariantes de ciclo e 93
12.6. Alany Barbara 93
Tipo de Dato Abstracto 95
13.1. Tipo de Dato Abstracto 95
13.2. Interfaz e e e 96
13.3.Barbara e e 97
134 Alan e e 98
13.5. Invariantes de representaciéon L Lo Lo 99
13.6. Modularizacion e e e e e 101
Modularizacién 103
14.1. Proceso de compilaciéon 103
14.2. Modularizacion e e e e 104
14.3. Archivos de encabezados 105
14.4. Make e 107
14.5. Entidades publicas y privadas L L oL L 109
14.6. Macros de funcidn e 110
Manejo de archivos 111
15.1. Introduccion e e 111
15.2. Interaccion con los archivos e 112
153. ELtipo FILE o 113
15.4. Archivos de texto e e e 114
15.5. Archivos binarios e e e 117
Argumentos en Linea de Comandos (CLA) 121
16.1. Argumentos 121
16.2. Usodeargumentos 122
16.3. Comodines e e e e e 123
Complejidad Computacional 124
171 Eficiencia o e e e e e e e e 124
17.2. Notacion O e e e e e 126
17.3. Blsqueda binaria 127
17.4. Lecturadel vector e 129
Contenedores 131
181.Concepto 131
18.2. Listas e e 131
18.3. Implementacién con un arreglo dindmico 132
18.4. Lista genérica 134
18.5. Buscar unelemento e e e 136
18.6. Interfaz delista e 138

INDICE GENERAL INDICE GENERAL

19.

20.

21.

22,

Listas enlazadas 139
19.1. Lalistaenlazada 139
19.2. Implementaciéon como TDA L L 140
19.3. Recorrer lalista e 141
19.4. Eliminando nodos e e e e 143
195. Listas genéricas 145
19.6. Casos particulares 146
19.7. Eficiencia e 148
19.8. Tteradores e e e e 151
Otras estructuras enlazadas 154
20.1.Pilas e e e e 154
20.2.Colas e 155
20.3. Otras estructuras enlazadas 157
Recursividad 159
21.1. Recursividad e e e e 159
21.2. Tteracidn versus recursion it i e e e e e e e e e e e e e 160
21.3. Disefio de algoritmos recursivos 162
21.4. Recursividad decola 166
215, Wrapperso o 167
21.6. Técnicas de disefio de algoritmos 170
Algoritmos de ordenamiento 171
22 1. Introduccidn e e 171
22.2.Seleccion e e e e e e 172
22.3.InSercion e e e e e e e e 173
224. Mergesort 175
225.Quicksort e e e e 182
22.6. Resumen e e e e 185

Capitulo 1

Introduccion

El siguiente apunte intenta ser una guia de consulta complementaria a las clases de TA130.

1.1. Algoritmos y programacion

Antes de entrar en detalles de implementacién importa explicar el concepto de algoritmo.

Los algoritmos son una abstraccion de pensamiento que existe desde milenios antes de que
el ser humano piense ni siquiera en tener computadoras.

Un algoritmo es sencillamente una sucesién de pasos sisteméticos que sirven para resolver
un problema. Por ejemplo, cuando en la escuela primaria aprendemos a multiplicar dos ndmeros
decimales de 7 cifras lo hacemos utilizando un algoritmo determinado.

Los algoritmos tradicionalmente se explican de forma informal como una serie de pasos
en lo que se conoce como un pseudocddigo. Insistimos en el punto de que son estructuras
abstractas, asi como nuestro lenguaje es abstracto. Somos nosotros los que tenemos la capacidad
de interpretar de esa explicacion los pasos a seguir.

Por el otro lado, los programas son implementaciones de algoritmos para ser ejecutados
por una computadora. Ahi ya no hay abstraccién, las computadoras necesitan una secuencia
de instrucciones estrictas para ser ejecutadas en un determinado orden, sin ningtn tipo de
ambigiiedades.

A diferencia de los algoritmos, que se expresan en lenguaje natural, los programas se
implementan en en lenguajes de programacién. Los lenguajes de programacion tienen reglas
estrictas de sintaxis sin ambigiiedades.

Volviendo a los algoritmos y la programacién, ambas cosas son independientes entre si y en
este curso nos centraremos en ambas por separado. Necesitaremos aprender un lenguaje para
programar nuestros algoritmos, pero ademds necesitaremos herramientas mds abstractas para
disefiar nuestros algoritmos previo a programarlos. Por lo general no hay un tinico algoritmo
para realizar una misma operacién y puede haber mucha diferencia en el rendimiento (por
ejemplo medido en cantidad de operaciones o de memoria) entre diferentes variantes, cosa
que no tiene nada que ver con los detalles de implementacién en un lenguaje en particular.
Retomando el ejemplo de la escuela primaria aprendemos a multiplicar dos ntimeros de
n cifras con un algoritmo que realiza n x n = n? multiplicaciones de 1 cifra, sin embargo
existen algoritmos como por ejemplo el algoritmo de Karatsuba que utiliza menos de 3 - 1'%
multiplicaciones.

1.2. PROCESADORES Y PROGRAMACION CAPITULO 1. INTRODUCCION

1.2. Procesadores y programacién

Las computadoras son dispositivos que tienen la caracteristica de ser programables. La
circuiteria de base de la computadora se llama hardware, mientras que el programa que se
carga sobre ella se llama software. En esta materia vamos a centrarnos en la construccién del
software.

Si bien estamos hablando de computadoras en el &mbito de la electrénica hay muchos
dispositivos que contienen un microcontrolador programable y no necesariamente tengan el
aspecto de lo que usualmente interpretamos como una “computadora” (un monitor, un teclado,
mouse, gabinete, etc.). En este curso nos centraremos en programar para computadoras, pero
el area de aplicacién de la electrénica también incluye a los dispositivos “embebidos” que
contienen microprocesadores en su interior.

Genéricamente un dispositivo programable consiste de dos &reas: Un procesador y una
memoria.

Una memoria es un dispositivo con determinada capacidad que permite almacenar datos
(usualmente bytes) en una determinada posicién numerada para recuperarlos después. En la
memoria podemos encontrarnos valores que queremos recordar, pero también va a ser donde
se aloje el programa que queramos ejecutar.

El procesador es un dispositivo que sabe cémo ejecutar un determinado niimero de opera-
ciones. Cada operacién es una accién atémica del estilo de sumar dos datos, traer un dato de la
memoria, almacenar un resultado en ella, tomar una decisién, etc. Las operaciones se ingresan
en forma de instrucciones que no son mds que un niimero que codifica el cédigo de operacion
y los parametros de la misma. Esto es lo que constituye el cédigo de mdquina, y los programas
no son otra cosa que una sucesion de instrucciones. Cuando el procesador ejecuta un programa
no hace otra cosa que ir decodificando de forma secuencial las instrucciones de un programa y
ejecutando las operaciones que alli se contienen.

Dado que las instrucciones de c6digo maquina son valores binarios dificiles de memorizar
lo més usual es que si se quiere generar un programa a partir de sus instrucciones las mismas
se codifiquen en lenguaje de ensamblador. El lenguaje de ensamblador (assembly) consiste en
ponerle nombres amigables a cada una de las operaciones, estos nombres se llaman mnemoni-
cos. Entonces por ejemplo una operacién en vez de ser la operacién 13 se transformaréa en la
operacion ADD (suma en inglés), y por ejemplo la operacién de sumar el dato del registro B
que se identifica con el 2, en vez de ser una codificacién de ese 13 con el 2 que prodria dar
algo estrafalario como 210, se programard como ADD B. Escribir un programa que codifique
instrucciones de assembly en cédigo maquina es muy sencillo y desde el inicio de la programa-
cién que se utilizan de estos programas, llamados ensambladores, para poder programar en
assembly y generar con él los programas.

Como cada procesador tiene sus propias operaciones el cédigo de mdquina es tinico para
cada modelo de procesador. Es decir, los programas codificados para un determinado procesador
no funcionaran en otro (y también el assembly de cada procesador sera tinico). En este contexto
es donde surgen los lenguajes de programacién. La idea de los lenguajes de programacién es
poder expresar las operaciones de forma semdntica y dejar que otro pograma, el compilador,
decida qué operaciones de assembly hay que utilizar en determinada plataforma en particular
para concretar esa operaciéon. Los lenguajes de programacion no estdn atados a una plataforma
en particular y, siempre y cuando haya un compilador disponible, podremos compilar nuestro
programa para ejecutarse en un procesador determinado.

1.3. El lenguaje de programacion C

Los primeros lenguajes de programacion surgieron en la década de 1950, y hay un sinntimero
de ellos disponibles. En este curso utilizaremos particularmente el lenguaje C.

8

AN Ul = W N =

NOTAS DE TA130 SEBASTIAN SANTISI

La historia de C nace de la mano del sistema operativo Unix. En el afio 1970 Ken Thompson
y Dennis Ritchie, entre otros, desarrollan este sistema operativo para la computadora DEC
PDP-7. El cédigo de Unix se migra posteriormente a la computadora siguiente PDP-11/20 y
queda en claro que desarrollar un sistema operativo en assembly no es eficiente porque hay
que reescribirlo por cada nuevo procesador.

En ese momento habia una gran variedad de lenguajes de programacién orientados a las
matemadticas, a los sistemas bancarios, inteligencia artificial, ensefianza, etc. pero no habia
ningtn lenguaje de programacion orientado a la escritura de sistemas operativos. Para escribir
un sistema operativo lo que se necesita es un lenguaje con operaciones de suficiente bajo nivel
para poder ser traducidas casi uno a uno en instrucciones de assembly, sin abstracciones de alto
nivel que sean complejas de traducir a lenguaje de mdquina. Ademads se necesita que el lenguaje
provea de una interfaz simple para acceder a los recursos de hardware. Con esas premisas es
que en el afio 1972 Dennis Ritchie desarrolla el lenguaje de programacién C, lenguaje en el cual
se reescribe completo Unix después.

Hoy en dia, mas de 50 afios mas tarde, C sigue siendo uno de los pocos lenguajes de
programacién que permite acceder de forma transparente al hardware que esta debajo y que
conjuga la elegancia de un lenguaje de programacién con la potencia del assembly, pero
garantizando la portabilidad a cualquier procesador.

Dicho sea de paso, que el lenguaje de programacién C date del afio 1972 no significa que
hoy en dia se programe el C de ese afio. El lenguaje ha sido actualizado multiples veces, y ha
pasado por un proceso de estandarizacién con estdndares ISO que son revisados y mejorados
cada una decena de afios. El primer estdndar data del afio 1989, pero hay estdndares 1999,
2011, 2018 y actualmente se estd elaborando un estdndar nuevo. En este curso en particular nos
centraremos en el estdndar ISO-C99.

1.4. El hola mundo

En el afio 1978 Brian Kernighan y Dennis Ritchie publican el libro El Lenguaje de Progra-
macién C, conocido simplemente como K&R (Kernighan and Ritchie) y en él introducen el
lenguaje a partir de un programa que saluda al usuario. La influencia de ese libro ha hecho
que desde ese entonces el “hola mundo” sea el estandar para presentar cualquier lenguaje de
programacion.

El hola mundo en C tiene el siguiente aspecto

hola.c

#include <stdio.h>

int main() {
printf ("Hola_ mundo\n") ;
return O;

y aunque en principio es el programa mas sencillo que podamos hacer, explicar cada una de sus
lineas implica adentrarse en cémo funciona el lenguaje. Dejémoslo para un poco mds adelante.

Lo que mostramos recién es el cédigo fuente del hola mundo, ahora bien, eso no es un
programa, es decir, no es un conjunto de instrucciones que pueda ejecutar un procesador. Es en
realidad la receta para que un compilador pueda construir ese programa.

Si quisiéramos construir un programa deberiamos meter el contenido del hola mundo en
un editor de textos sin formato y guardarlo como un archivo, por ejemplo hola.c, para luego
compilarlo.

O N O U o W

1.5. FUNCIONES CAPITULO 1. INTRODUCCION

El compilador que vamos a utilizar en este curso se llama GCC (GNU compiler collection) y
vamos a asumir que lo tenemos instalado en nuestro sistema GNU/Linux y que accedimos a
una terminal del sistema.

Si quisiéramos compilar hola.c para generar el ejecutable hola.exe en la terminal escri-
birfamos lo siguiente:

$ gcc hola.c -o hola.exe

$

Si todo estuviera bien el compilador generaria el programa hola.exe y no imprirfa salida,
en cambio si hubiera errores el compilador nos indicaria de qué errores se trata.
Una vez generado el hola.exe podriamos ejecutarlo de la siguiente manera:

$./hola.exe
Hola mundo

$

Esa es la ejecucion de nuestro primer programa.

1.5. Funciones

Presentemos el siguiente codigo:

int cuad(int n) {
return n * n;

Ese c6digo define una funcién llamada cuad (). Una funcién en programacion es asimilable
a una funcién en matemética!. Desde afuera podemos pensarla como una cajita negra en la que
entran valores y la funcién nos devuelve otros valores.

Esta funcién recibe como pardmetro un valor llamado n de tipo entero (int) y devuelve a su
vez un valor entero. La estructura de declaraciéon de una funcién es:

tiporetorno nombrefuncion(tipoparametrol nombreparametrol,
<~ tipoparametro?2 nombreparametro2, ...);

Internamente la funcién devuelve (return) el resultado de computar n * n, es decir la
multiplicaciéon de n por si mismo, o sea n elevado al cuadrado?.

Las funciones nos van a servir para encapsular operaciones complejas, cosas que queramos
reutilizar, para jerarquizar complejidades en nuestros programas, entre otras cosas.

Una funcién por si sola no hace nada, una funcién es un fragmento de c6digo que se ejecuta
tnicamente si la funcién es invocada. Invoquemos a la funcién cuad O:

#include <stdio.h>

int cuad(int n) {
return n * n;

int main() {
int cuad_dos = cuad(2);
printf ("El,cuadradode 2, es,%d\n", cuad_dos);

10jo, que sean similares no quiere decir que sean lo mismo.
2De ahi el nombre de la funcién.

10

10
11

NOTAS DE TA130 SEBASTIAN SANTISI

return O;

Hay muchas cosas para explicar, vayamos por partes.

El fragmento que dice cuad(2) es una invocacién a la funcién cuad(). Internamente el
programa interrumpe su flujo de ejecucion para ejecutar el cédigo de la funcién cuad (). Como
estamos invocando a la funcién con el valor 2 ese va a ser el valor que va a tomar n adentro de
la funcién. Internamente se va a operar n * n que, como n vale 2, va a dar como resultado 4 y
finalmente la funcién va a devolver ese valor 4. Es decir, después de llamar a la funcién se va a
continuar con el flujo y donde decia cuad(2) el resultado de esa invocacion seré 4.

La expresién int cuad_dos declara una variable llamada cuad_dos de tipo entero. Las
variables sirven para almacenar valores que queremos recuperar después. El operador = es
la asignacién, a = b le asigna a la variable a el resultado de la expresiéon b. En este caso,
almacenamos el 4 en la variable cuad_dos.

Cuando hicimos el hola mundo no lo sabiamos pero ahora si: printf () también es una
funcién y la estamos invocando. Esta funcién lo que hace es imprimir por la terminal lo que le
pidamos. Prestar atencién a que esto se aparta por completo del concepto de funciones que
tenemos en la matematica, no invocamos a printf () para que nos devuelva algo® sino que la
invocamos para que haga algo por fuera del mecanismo de pasaje de pardmetros, devoluciéon
de valores.

printf () es una funcién compleja que puede recibir un niimero variable de pardmetros,
ahora bien el pardmetro mas importante es el primero, que es la “cadena de formato”. Esta
cadena le dice a printf () qué es exactamente lo que tiene que imprimir, y ademas le indica
qué parametros adicionales se han utilizado. En este caso el modificador " %d" le dice a printf
— () que espere un parametro adicional de tipo entero. Al ejecutar la funcién imprimird por
la terminal "E1,,cuadrado de 2 es 4\n", es decir, el " %d" se reemplazara por el valor de la
variable cuad_dos.

¢Qué representa el "\n" al final de la cadena de formato de printf ()? Proba sacdndolo y
fijate qué pasa.

Ahora bien, ;de donde sali6 printf (), quién la programd, cémo es que puedo usarla si no
la defini? Bueno, printf () es una funcién de la biblioteca de C. La biblioteca de C es provista
por el compilador y trae un montén de funciones auxiliares que no necesitamos programar*.
Vamos a entrar en detalles més adelante.

Llegado a este punto podemos explicar qué significa la linea #include <stdio.h> que estd
al comienzo. Esa linea incluye las cosas necesarias para que el compilador “sepa” cémo es
printf (). La palabra stdio significa standard input/output, o sea, entrada/salida estdndar, y
declara todas las funciones que tienen que ver con leer y escribir datos.

Nos falta explicar una tltima cosa y es el elefante en la habitacién: main() también es
una funcién. Particularmente se trata de una funcién que no recibe ningtin parametro y que
devuelve un valor entero. La funcién main() es una funcién especial. Es el “punto de entrada”,
es decir la funcién que se ejecuta cuando se inicia nuestro programa. Toda la funcionalidad
que implementemos va a estar comandada desde esta funcién, lo cual no quiere decir que no
podamos llamar a otras funciones, como efectivamente estamos haciendo en el ejemplo.

El valor de retorno de main() es un retorno hacia afuera del programa, al sistema operativo.
La convencién es que si nuestro programa terminé correctamente devolvamos 0. A estas alturas
del conocimiento de C todos nuestros programas van a terminar correctamente asi que de
momento devolveremos siempre 0.

3Lo cual no quita que printf () nos devuelva algo, que como no nos importa no lo estamos capturando en ninguna
variable.

4Y que en algunos casos tampoco sabriamos c6mo programar, porque para desarrollar la funcionalidad de printf ()
necesitarfamos conocer un montén de detalles sobre la plataforma donde estamos compilando y la gracia de utilizar un
lenguaje de programacion era justamente la de abstraerse de la plataforma y dejarle ese dolor de cabeza al desarrollador
del compilador.

11

1.5. FUNCIONES CAPITULO 1. INTRODUCCION

Y con esto no sélo explicamos el ejemplo, explicamos ademds todas las cosas que estdn en el
hola mundo.

12

Capitulo 2

Sintaxis basica de C

Como ya dijimos los lenguajes de programacion, a diferencia de los idiomas que hablamos,
tiene una sintaxis estricta que no deja lugar para ambigiiedades. Entendemos por sintaxis la
estructura del lenguaje, como se forman sus “oraciones”, cudles son sus conectores, etc. En
paralelo a ello tenemos la semdntica que es la intencién de una expresién. Una expresiéon puede
ser sintdcticamente correcta, pero no tener ningtn sentido desde la semantica.

En las siguientes secciones iremos abordando diferentes partes de la sintaxis bésica del
lenguaje C.

2.1. Identificadores

Los nombres de las variables y funciones, llamados identificadores, pueden contener letras
dela aalaz delaAalaZ nimeros del 0 al 9 y guiones bajos (_) con la salvedad de que no
pueden empezar con un ndmero.

Por ejemplo, son identificadores validos suma_cuadrados, sumaCuadrados, SumaCuadrados,
_suma_cuadrados, SUMA_CUADRADOS o SumaCuadra2, mientras que son invélidos 2SumaCuadra,
SumaCuadra-2 o int.

iMomento!... ;por qué el tltimo es invalido, si bien cumple las reglas? Es invalido porque
int es una palabra reservada del lenguaje. Son palabras reservadas todas aquellas que ya
significan algo diferente en C. La siguiente es la lista completa de palabras reservadas del
lenguaje:

auto double int struct break else long switch case enum register typedef char
<~ extern return union const float short unsigned continue for signed void default
<~ goto sizeof volatile do if static while _Bool _Imaginary restrict _Complex inline
(_>

2.2. Expresiones

Las expresiones en C son las construcciones que al ser evaluadas resultan en un valor. Las
hay de diferentes tipos:

Literales: Los literales son las expresiones que literalmente ya representan un valor en si.
Sencillamente evaltian a ese valor. Ejemplos: Ntmeros enteros: 0, -3, 42, nameros de
punto flotante: 0.0, -3.3, 42.92039, 6.022e23, cadenas de caracteres: "Hola, mundo".

Variables: Las variables evaltian al valor almacenado en dicha variable. Por ejemplo: Si hemos
definido int i = 5, si luego operamos i + 1 la expresién i evaluard a 5, el valor que
almacend.

13

2.3. OPERADORES CAPITULO 2. SINTAXIS BASICA DE C

Operaciones: Las operaciones permiten combinar otras expresiones y evaltian a lo que compute

esa operacion. Por ejemplo 5 + 7,5y 7 son literales y evaltian a su valor y la operacién +
es la suma, por lo tanto la expresién evaluara a 12. Dado que las operaciones permiten
combinar expresiones y a su vez las operaciones son expresiones esto significa que se
pueden hacer expresiones con operaciones tan complejas como uno quiera, por ejemplo
(a+5)/ 3 +h0.

Llamadas a funcién: Las llamadas a funcién evaltian a lo que devuelva la funcién para las

expresiones que reciba como pardmetros. Por ejemplo cuad(1 + 2) evaluard a 9.

Asignacién: Si bien en C la asignacién = es un operador, es decir su comportamiento esta

englobado en el item “Operaciones” vale la pena explicarlo por separado. La operacién
de asignacién devuelve el valor que asigné. ¢El operador de asignacién no servia para
asignar? 51, también, ademds modifica el valor de la variable que esté a izquierda, pero el
operador de asignacién como operador devuelve el valor de lo que asigné. Por ejemplo,
la expresién: a = b = 5 se ejecuta con la siguiente asociatividad a = (b = 5), es decir,
primero asigna 5 a b, ahora bien, ;qué asigna en a? Bueno, como se dijo, el operador
devuelve lo que asigné, es decir 5, por lo que en a también se asignara 5.

Pregunta: ;Cuanto valen a y b después de ejecutar la siguiente expresiéon: b = 5 + (a =
— cuad(3 - 1)+ 2);

2.3.

Operadores

Los operadores de C pertenecen a varias categorias, en esta seccién vamos a ver algunas de

ellas.

2.3.1. Aritméticos

+: Operador de suma. Ej.: 2 + 2, evaluacioén 4.

-: Operador de resta. Ej.: 100 - 1, evaluacién 99.

*: Operador de multiplicacién. Ej.: 2 * 5, evaluacién 10.

/: Operador de divisién. Ej.: 7 / 2, evaluacién 3.

%: Operador del resto de la divisién. Ej.: 7 7% 2, evaluacién 1.

2.3.2. Signo

-: Signo negativo. Ej.: Sia = 5, -a evaltia a -5.

+: Signo positivo. Ej.: Sia = 5, +a evaltia a 5. (51, es muy til...)

Notar que si bien el simbolo de estos operadores es el mismo que el de los aritméticos
la diferencia es la aridad de los mismos. Los operadores aritméticos son binarios, es decir,
necesitan dos valores para operar, mientras que estos operadores son unarios (0 monarios).

14

NOTAS DE TA130 SEBASTIAN SANTISI

2.3.3. Asignacién:

En principio el operador de asignacién es el = y como ya se dijo, ademdas de modificar el
valor de la variable a izquierda, devuelve el valor que asigné.

El operador de asignacién se puede combinar con los aritméticos para actualizar el valor de
una varible.

Ejemplo, si a = 5 la expresién a += 2 es equivalente a a = a + 2 por lo que luego de
ejecutarse a valdrd 7.

De forma andloga esto mismo funciona para los operadores -=, *=, /=, %= (en estos dltimos
dos prestar atencién a que la actualizacién es sobre el numerador).

Las operaciones de actualizacién son algo muy comun en la programaciéon y preferiremos
utilizar estos operadores por una cuestién de claridad en la intencién (seméntica) de una
expresion.

2.3.4. Incrementos:

Entre todas las operaciones de actualizacién, la mds comtn es la de incrementar en uno o
decrementar en uno una variable y para ello el lenguaje C provee no uno si no 4 operadores.

El operador ++ incrementa en uno el valor de una variable, mientras que el operador --
decrementa en uno el valor de una variable. Ahora bien, hay dos variantes de cada uno y
difieren no en cémo modifican a la variable si no en su valor de evaluacién dentro de una
expresion.

Cuando el operador ++ (--) se encuentra a izquierda de la variable es el operador de
preincremento (decremento) y el mismo evalda al valor nuevo de la variable.

Ejemplo:

int b, a = 5;
b = ++a;

a vale 6 y también vale eso b, porque el resultado evalué al valor de a luego de ser incrementado.
Cuando el operador ++ (--) se encuentra a derecha de la variable es el operador de postin-
cremento (postdecremento) y el mismo evalta al valor viejo de la variable.
Por ejemplo:

int b, a = 5;
b = a++;

a vale 6, porque la incrementamos, pero en este caso b vale 5 porque el operador evalu6 al valor
de a previo al incremento.

Dicho sea de paso, notar que ++a es una expresiéon totalmente diferente a a + 1. Si bien
ambas evaldan al valor que da incrementar a en uno, la primera modifica a la variable mientras
que la segunda no. Es mds, la primera requiere obligatoriamente que haya una variable mientras
que la segunda puede ser una operacién entre expresiones literales, o de llamada a funcién o
una expresion derivada.

2.4. Precedencia y asociatividad.

Todos los operadores tienen una precedencia definida. Para simplificar diremos que (en la
mayor parte de los casos) las mismas son las que esperariamos que tuvieran.

Es decir, si evaluamos 2 * 3 + 1 la multiplicacién tendrd precedencia sobre la suma y el
resultado serd 7.

Si quisiéramos forzar una precedencia diferente de la predeterminada podemos utilizar
paréntesis: 2 * (3 + 1) dard como resultado 8.

15

2.5. INSTRUCCIONES CAPITULO 2. SINTAXIS BASICA DE C

El operador de asignacién tiene la més baja de las prioridades, o sea, es el dltimo que se
ejecuta.

En cuanto a la asociatividad, la misma en C es de izquierda a derecha. Es decir, en la
expresién 1 + 2 + 3 la misma se ejecutard como si fuera (1 + 2)+ 3. Ahora bien C no define
un orden de ejecucidn, las expresiones pueden evaluarse en cualquier orden. En el ejemplo dado
que se trata de literales esto carece de importancia, pero si la expresién fuera £() + g() + h()
por més que la asociacién sea de izquierda a derecha no hay garantia de en qué orden se van a
evaluar las funciones, y si las mismas modificaran algtn estado interno o interactuaran con el
exterior el resultado seria indefinido!.

Todas las asociatividades son de izquierda a derecha con excepcién de las asignaciones, por
ejemplo a = b = 5; evalta de derecha a izquierda:a = (b = 5);.

2.5. Instrucciones

Un programa se compone de instrucciones o sentencias. Serfan las “oraciones” de nuestro
cédigo, cada una con un significado independiente de las demas.

Las instrucciones se separan por ; y generalmente se escribe una instruccién por linea, si
bien al compilador no le importa como acomodemos el cédigo.

En el ejemplo del hola mundo, la linea del printf () representa una funcién asi como lo
representa la linea del return.

Las instrucciones pueden constituirse en bloques, los bloques se definen en C con un { para
iniciarlo y un } para cerrarlo. Los bloques se pueden anidar, por lo que cada } termina el dltimo
bloque que se abrié.

En los ejemplos vistos hasta el momento utilizamos bloques para definir el contenido de las
funciones main() y cuad().

Generalmente una instruccién se constituye por una expresion de las que ya desarrollamos,
pero también son instrucciones la declaraciéon de una variable, la declaracién de una funcién, el
return y las estructuras de control de flujo que veremos mas adelante.

2.6. Declaracion de variables

En el lenguaje de programacion C una variable tiene que ser declarada antes de ser utilizada.

Para declarar una variable, o un conjunto de variables se escribe primero el tipo de la
variable y luego el nombre (o los nombres) de la misma.

Por ejemplo:

int a;
int b, c;

Ademas una variable puede o no ser definida en el momento de su declaracién. Definir una
variable es darle un valor. Por ejemplo:

int a, b = 5;

En este caso estamos declarando la variable a pero declarando y definiendo la variable b
con un valor de 5.

1Cuando decimos que un resultado es “indefinido” no significa que sea un resultado ilégico, en este caso el resultado
tiene que ser alguna de las combinaciones de evaluaciones de las funciones. Indefinido significa que no sabemos cual
y por lo tanto nuestro programa puede hacer cosas diferentes segtin decida el compilador. Esto implica que nuestro
cédigo es ambiguo, lo cual viola la idea de que un programa no deberia serlo. Si quisiéramos eliminar la indefinicién,
podriamos tranquilamente evaluar las funciones previamente en el orden que queramos, guardar los resultados en
variables y luego operar con los resultados.

16

T = W N =

NOTAS DE TA130 SEBASTIAN SANTISI

Siempre que utilizamos una variable en una expresién (es decir, que queramos evaluar su
valor) tiene que haber sido definida previamente. En el lenguaje C si una variable no hubiera
sido definida su contenido es indefinido y daré lugar a resultados impredecibles.

2.7. Declaracion de funciones

En los ejemplos vimos cémo definir una funcién con la secuencia tipo de retorno, nombre de
funcién, parametros y entre llaves el bloque de instrucciones que constituye su implementacién:

int sumar (int a, int b) {
return c;

La primera linea de la definicion representa la firma, prototipo o interfaz de esa funcién. Es
la que dice cudles son los pardmetros formales de la funcién.

Ahora bien, hay veces en las cuales sélo queremos declarar una funcién para darle a conocer
al compilador la firma de una funcién pero no proveer (todavia) la definicién de la misma. Para
ello escribimos la firma seguida de un ;:

int sumar (int a, int Db);

Esto no nos libera de proveer una implementacién de la funciéon sumar () eventualmente,
pero dado que el compilador trabaja de arriba hacia abajo en una tinica pasada, permite poder
utilizar funciones que atin no estan definidas.

Hay dos usos primarios para declarar una funcién. El primero es un tema de estructura de
cédigo, si cada funcién tuviera que estar definida antes de ser utilizada nos obligaria a tener
todas las funciones ordenadas segtn cudl usa a cada cudl e incluso no podria resolver casos
donde dos funciones se llamaran mutuamente. La declaracién resuelve este problema y permite
estructurar libremente el c6digo.

El otro uso de la declaracién de una funcién es cuando la implementacién va a ser provista
por otro mecanismo. Ese es el caso de, por ejemplo, el uso de la funcién printf() que
utilizamos pero no implementamos. Y ahora si terminamos de explicar el ejemplo del hola
mundo, la instruccién #include <stdio.h> de la primera linea incluye en mi cédigo fuente
el archivo de encabezados (headers, de ahi .h) stdio.h provisto por el compilador. En él no
estd la definicién de la funcién printf () pero si su declaracién, lo cual permite que yo pueda
utilizarla. La implementacién de la misma se incorporard a mi ejecutable en un paso posterior a
la compilacion que explicaremos maés adelante.

2.8. Comentarios

Muchas veces hay porciones de cédigo que necesitan documentaciéon de qué representan.
Esta documentacién no forma parte del coédigo que le importa al compilador si no que le
importa a otros programadores. Para esto se utilizan los comentarios.

C tiene dos variantes de comentarios, de mdltiples lineas o de final de linea. Los comentarios
de lineas multiples inician con un /* y se terminan con un */, mientras que los de final de linea
van desde un // hasta el final de la linea. Por ejemplo:

/ %
Calcula el médulo de un vector 2D.
Argumentos:
float x: coordenada de las abscisas
float y: coordenada de las ordenadas

17

O 0 N O

10

2.8. COMENTARIOS

CAPITULO 2. SINTAXIS BASICA DE C

Devuelve: (float) el médulo del vector

*/

float modulo_vector (float x, float y) {

return sqrt(x * x + y * y);
~— <math.h>

// sqrt

-> raiz cuadrada,

incluir

18

Capitulo 3

Datos

Cuando en el primer capitulo definimos al procesador dijimos que el mismo consistia en un
procesador y una memoria, donde la memoria almacenaba bytes accesibles de forma individual
sabiendo su posicion.

Queremos remarcar eso: la memoria guarda paquetitos de ocho unos y ceros y desconoce
qué representan esos valores. Desde el punto de vista de la memoria en determinada posicién
hay un determinado patrén de bits que representa un byte.

Dado que la computadora opera con ceros y unos se puede decir que la computadora
guarda valores binarios.

Los seres humanos solemos usar el sistema decimal para la mayor parte de las cosas y
lamentablemente no hay una manera directa de traducir decimal a binario y viceversa sin hacer
una secuencia de operaciones.

En el lenguaje C los literales pueden ingresarse en decimal, como ya vimos hasta el momento,
pero también en base octal y en base hexadecimal:

1234 // Valor decimal
01234 // Valor octal
0x1234 // Valor hexadecimal

Son octales los literales con un niimero impar de ceros a izquierda, y son hexadecimales los
literales con un 0x a izquierda.

Internamente los 3 ntimeros ingresados se guardaran segiin su representacién binaria e,
ir6nicamente, no hay manera de ingresar literales binarios en el estdndar C99.

Las bases 8 y 16 son de particular interés dado que 23 = 8 y 24 = 16 y esto implica que las
conversiones de octal y hexadecimal a binario pueden hacerse de forma muy sencilla agrupando
digitos de a 3 y 4 unidades respectivamente. Los ntimeros que se piensan en binario suelen
escribirse en hexadecimal para reducir el nimero de digitos.

3.1. Datos en la memoria

Si por ejemplo en la memoria RAM tuviéramos la sucesién de bytes [01010010, 10100001,
< 01010100, 10100001] esto podria representar diferentes hipotéticos valores segtin cémo
interpretaramos esos valores.

Por ejemplo, si dijéramos que esos valores representan ntimeros enteros positivos repre-
sentados por su codificacién binaria en la memoria estarian (en decimal) los valores [82,
< 161, 84, 161]. Ahora bien, si dijéramos que son nimeros signados, donde el primer bit
representa el bit de signo y la codificacién es complemento a 2 podria interpretarlos como
[82, -95, 84, -95].

19

3.2. DECLARACION DE UNA VARIABLE CAPITULO 3. DATOS

La interpretacién no termina ahi. Podria decir que cada valor representa un cardcter segin
una tabla, por ejemplo la tabla ASCII Latin 1 y en ese caso tendria ['R’>, ’;’, *T’, ’;’]ly
esto suena arbitrario, pero es exactamente asi como se almacenan textos en una computadora.
Tanto en la memoria RAM como en la memoria de disco los datos no son otra cosa que valores
binarios con una determinada codificacién.

Retrocedamos un poco sobre el problema, si la memoria almacena bytes, ;esto significa que
no puedo almacenar ndmeros de mas de 8 bits?, o sea, tengo sélo 28 = 256 valores posibles
para almacenar? No, tranquilamente puedo combinar los 4 bytes del ejemplo y decir que tengo
un tnico nimero de 32 bits que representa el valor [1386304673].

¢Cual es la conclusion de esto? En primer lugar la memoria es sélo un dispositivo para
almacenar datos en crudo, a la memoria no le interesa qué representa lo que almacené ni cémo
se opera. En siguiente lugar, si s6lo pudiéramos ver los datos en una memoria no nos dirfan
mucho porque los mismos datos pueden tener diferentes interpretaciones segtin el contexto. El
que le va a dar coherencia a esos datos es el compilador. El compilador es el que sabe cudl es el
tipo del dato que guardé en determinada posicién, y por lo tanto sabe qué instruccién tiene
que utilizar el procesador para operar sobre ese dato.

Para nosotros el uso de la memoria va a ser transparente. Si nosotros guardamos el valor
entero 1234 recuperaremos el valor entero 1234. Si a ese nimero le sumamos uno, vamos a
obtener el 1235. Y no importa si ocup6 un byte, dos, cudl fue la codificacién para ordenar
esos bytes y si se guardé en binario o en otra base. Ese es un problema del procesador y del
compilador, para nosotros son niimeros decimales que podemos manipular con las reglas que
conocemos.

3.2. Declaracion de una variable

Como ya mencionamos, los datos se encuentran en la memoria y son bytes.

La accién de declarar una variable en C es pedirle al compilador que reserve una porcién de
una determinada cantidad de bytes de memoria y le asigne a esa porciéon un nombre con el
cual nos vamos a referir.

Cuando escribimos int a; estamos diciéndole al compilador que identifique con la etiqueta
a un bloque de memoria de tamafio suficiente como para operar con una variable de tipo entero.

Si cuando declaramos una variable no la definimos eso significa que la variable a contendrd el
valor que tenfa la memoria antes de decir “esta porcién de memoria se llama a”. Consideramos
a ese valor como “basura” dado que puede valer cualquier cosa. Esto no es un problema
siempre y cuando no pretendamos leer el valor de la variable a antes de definirlo.

3.3. Tipos de C

El lenguaje de programacién C trae una coleccién de tipos bdsicos. Estos tipos se separan en
dos categorias: enteros y de punto flotante.

Los tipos enteros son: char, short, int, long, mientras que los tipos de punto flotante son
float y double.

3.3.1. Enteros

Los tipos enteros contienen una cantidad fija de bits y en esa cantidad de bits se representan
nuimeros binarios enteros. Como la cantidad de bits es fija los nimeros tienen una determi-
nada capacidad, un valor méximo, por encima de ese valor ya no pueden seguir guardando
informacién. Lo importante es que por debajo de ese valor pueden guardar cualquier valor
particular.

20

NOTAS DE TA130 SEBASTIAN SANTISI

Si tenemos n bits para guardar informacién y cada bit puede guardar dos valores diferentes,
la cantidad de valores difentes que podemos almacenar en los bits serd 2".

Ya vimos que existen niimeros sin signo y nimeros con signo. En el caso de ntimeros con
signo, esos 2" valores se repartiran entre 0 y 2" — 1. En el caso de los ntimeros sin signo esos
valores estaran entre —2" ! y 2"~1 — 1. La asimetria en los signados es porque existe un tnico
cero y es positivo.

Los tamarios relativos de las diferentes clases de enteros dependen de la plataforma y del
compilador y no estan definidos en el estandar.

Daremos como ejemplo las clases en el compilador GCC para 64 bits!:

Tipo Bits Bytes Desde Hasta
signed char 8 1 -128 127
unsigned char 8 1 0 255
short 16 2 -32.768 32.767
unsigned short 16 2 0 65.535
int 32 4 -2.147.483.648 2.147.483.647
unsigned int 32 4 0 4.294.967.295
long 64 8 -9.223.372.036.854.775.808 9.223.372.036.854.775.807
unsigned long 64 8 0 18.446.744.073.709.551.615

Lo importante de estos valores es notar que como el crecimiento es exponencial duplicar la
memoria incrementa extraordinariamente el rango de los valores.

3.3.2. Tamaiio de la memoria

Como ya se dijo, el tamafio de los tipos dependerd de la plataforma y del compilador.

En las aplicaciones donde necesitemos conocer el tamafio de un tipo o de una variable
podemos utilizar el operador sizeof.

Aplicar sizeof (x) siendo x un tipo o una variable evaluaré al tamafio en bytes de x.

Para los tipos enteros el tinico tamafio definido en el estdndar es el de un char:

sizeof (char) = 1.

Para el resto de los enteros se verifica que:

sizeof (char) < sizeof (short) < sizeof (int) < sizeof (long), sin més restricciones
adicionales.

3.3.3. Desbordamiento (overflow)

Como se dijo los enteros tienen un ntimero fijo de bits. ;Qué pasa cuando una operacién
necesita mas? Sencillamente el resultado se almacena en los bits que haya disponibles.

Por ejemplo, si tuviéramos una variable unsigned char x = 255; la misma se representa
en binario como 11111111, es el nimero mds grande que podemos almacenar (28 — 1). Si
hiciéramos x++ en el mundo de las matematicas el resultado deberia ser 100000000, es decir
256. Pero como sélo disponemos de 8 bits se almacenara 00000000, es decir, el resultado sera
cero. Podemos pensar como que la variable “peg6 la vuelta”.

Esto aplica también para ntiimeros signados incluso sin llegar a quedarnos cortos de bits.
Si tuviéramos signed char x = 127; esta variable se representa como 01111111 "1 —-1).Si
hiciéramos x++ obtendriamos 10000000, lo cual entra perfectamente en 8 bits... pero estamos
invadiendo el bit que reservamos para el signo, un namero que tenga en 1 el bit mas pesado
tiene que ser un ndmero negativo, por lo que el resultado da -128, es decir el niimero mas chico.
También la variable “pega la vuelta”.

El desbordamiento puede darse haciendo operaciones o también asignando resultados
en una variable de tamafio insuficiente. En todos los casos se guardaran sélo los bits para

1Y ademas utilizaremos esos valores como referencia en el resto del curso, pese a que sepamos que pueden variar en
otra plataforma.

21

N O U s W N -

3.3. TIPOS DE C CAPITULO 3. DATOS

los que haya capacidad y se perderdn el resto. A diferencia de lo que se puede pensar, este
comportamiento es totalmente deterministico y predecible. Tal vez desde la seméantica no tenga
sentido, pero sintdcticamente el lenguaje funciona asi.

3.3.4. Numeros de punto flotante

Los ntimeros de punto flotante en C utilizan una representacién cientifica de mantisa fija y
exponente.

Por ejemplo, el ntimero —12,345 podria expresarse con una mantisa fija de 6 digitos y en base
decimal como 123450 x 10~*. Notar que la notacién cientifica permite escribir nimeros muy
chicos 0 muy grandes jugando con el exponente, pero manteniendo siempre fija la precision.
Todos los ntimeros tienen la misma cantidad de cifras representativas. Los nimeros cientificos
dan cuenta de la magnitud, no del valor exacto.

Los ntimeros de punto flotante utilizan internamente algo similar a esto, reservan un bit para
el signo, una cantidad de bits para la mantisa y otra para el exponente... con la particularidad
de que estdn en base dos, normalizados y un montén de detalles de implementacién que vienen
del estdndar IEEE 754 y no nos importan.

Nos importa sélo este resumen:

Tipo Bits Bytes Desde Hasta Precisién (decimal)
float 32 4 +14x10°% £3,4 x 10°8 7
double 64 8 422 x 107308 417 x 1008 16

Y mas que todo nos importa de esta tabla la precisiéon, que estd expresada en digitos
decimales: 7 digitos para el float, 16 digitos para el double.

Para dar un ejempo de niimeros de punto flotante:

float pi = 3.141592;
double pi = 3.141592653589793;

Definir cualquiera de las variables con més digitos no va a aportar informacién adicional
porque se escapan de la representacién de la mantisa.

Dado que los ntimeros flotantes pueden ser absurdamente chicos o grandes, los literales
pueden expresarse en notacion cientifica: 12. 1E5 representa 12,1 x 10°, es decir 1210000.

3.3.5. void

En la declaracién de una funcién ya vimos que la firma tiene que indicar el tipo de retorno
y de los pardmetros. ;Cémo hacemos en el caso de las funciones que no reciben parametros o
las que no devuelven valores (también llamadas “procedimientos”)?

int f(void) {
// No recibe pardmetros pero devuelve un entero
return 8;

void g(void) {
// No recibe ni devuelve nada

}

void no es un tipo, es la palabra que utilizamos para indicar que no hay devolucién o
recepcion de ningtn valor.

22

X 3 O Ul N

NOTAS DE TA130 SEBASTIAN SANTISI

3.4. Literales

En C todo tiene tipo, incluso los literales. Generalmente no le prestaremos mas atencioén al
tema, pero vale la pena mencionarlo:

97 // int

97U // unsigned int

97L // long

97LU // unsigned long

97.0 // double

97 .0F // float

’a’ // int (ASCII 97 = ’a’)

"\x61’ // int (0x61 hex

97 decimal)

3.5. Operacion entre tipos

En un procesador no se admiten operaciones entre tipos mixtos. Todas las operaciones se
hacen siempre entre dos valores del mismo tipo. Asimismo el resultado de operar entre dos
valores del mismo tipo es del tipo de los operandos.

Es decir 1 + 2 evaluarda3y 1.0 + 2.0 evaluard a 3.0 e internamente el c6digo maquina
utilizard dos operaciones totalmente diferentes del procesador, en un caso la operacién de suma
de enteros y en el otro caso la de flotantes de doble precisién.

Tal vez pasé desapercibido el ejemplo pero en la tabla de operadores se dijoque 7 / 2 = 3
y esto cumple con la norma de que el resultado pertenece al tipo de los operandos. Es més:

double a = 7 / 2;
// a = 3.0

¢Por qué?, por asociatividad de las operaciones, la expresiéon 7 / 2 se evaltia primero y
evalia siempre a 3 independientemente del contexto.

Cuando hay dos operandos de diferente tipo entonces el compilador promueve el operando
de tipo “mas chico” al tipo del operando de tipo “maés grande”. Por ejemplo, en la expresién
1 + 1.2 se tiene un literal de tipo int y un literal de tipo double. El compilador considera que
el tipo doube le gana al tipo int por lo que promueve el 1 a 1.0. Luego evalta la expresiéon
1.0 + 1.2]acual evalta en 2.2.

El orden de las promociones es el siguiente:

char, short — int — unsigned int — long — unsigned long — float — double

lo cual sigue el orden esperable, tal vez con la salvedad de que los unsigned le ganen a los
signed.

En general podemos pensar que al promover dado que se pasa a un tipo “mds grande” no
hay pérdida de informacién, aunque esto no es del todo cierto. Por ejemplo: 12345678 + 1.0f
— 1234567e1f + 1.0f — 1234567e1£2. No nos olvidemos de que los enteros guardan niimeros
mas chicos pero con precisiéon completa a diferencia de los flotantes que guardan ntimeros
grandes pero con poca precision.

Retomando: Por lo general podemos pensar que al promover no hay pérdida de informacion.

Por el otro lado cuando se convierte un valor de un tipo “mds grande” a uno “mds chico”
se habla de truncamiento.

2Tomar este ejemplo como un ejemplo conceptual, dado que los float operan en base 2 la cantidad de cifras
decimales no son exactamente 7 si no que depende de cémo es la conversién a binario del valor puntual que ademas
hara aparecer digitos parasitos. Quedarse con la idea, el resultado real de la operacién es mucho mas complejo.

23

T = LW N =

NN U N —

3.6. CONVERSION EXPLICITA DE TIPOS CAPITULO 3. DATOS

El truncamiento puede o no tener pérdida de informacién, de hecho ha habido un montén
de ejemplos hasta el momento en este apunte de truncamiento, como por ejemplo signed char
— x = 127; donde pusimos un literal de tipo int, es decir de 32 bits, en una variable de 8
bits. Aqui no hay pérdida de informacién porque la representacién binaria de 127 en 32 bits es
00000000 00000000 00000000 01111111, es decir, los bytes que se descartan valian todos cero.
Andlogamente cuando dijimos float pi = 3.141592; estamos guardando un literal double
dentro de un float, pero alcanza tanto el rango como la precision.

En C el truncamiento tinicamente va a darse al realizar asignaciones sobre variables mas
pequefias. La operatoria entre expresiones sélo va a generar promociones.

Un ejemplo de promociones y truncamientos:

int sumar (int a, int b) {
return a + b;

t

//

double x = sumar(4.8, 5.7);

El pardmetro a (int) de la funcién se inicializa con la expresién literal 4.8 (double), es decir,
hay un truncamiento a 4. Andlogamente b = 5. Luego la expresién a + b evaltia a 9 y como la
funcién es de tipo int se devuelve ese valor. Como x = 9 ahi hay una promocién, dado que
queremos guardar un int en un double. Finalmente x vale 9.0.

Paréntesis al margen, cuando se hablé de declaracién de funciones se utilizé de ejemplo esta
misma funcién sumar (). La necesidad de que el compilador conozca la firma de las funciones
al momento de compilar una llamada a funcién es poder ajustar todas las conversiones de
tipos a los que la funcién requiere. Si al invocar a sumar(4.8, 5.7); no se hubiera provisto
la declaracién de la funcién, el compilador adivinarfa que la firma es int sumar (double,
— double); y haria fallar la compilacién al no encontrar una definicién que respete esa
firma.

3.6. Conversion explicita de tipos

En C podemos forzar la conversion de tipos si lo necesitamos. Esta operacién se conoce
como cast (del inglés “amoldar”) o (castellanizando) casteo. Para castear® una expresion se
antepone el tipo deseado entre paréntesis. Eso va a forzar a la expresién a convertirse al tipo
deseado:

int x = 5;

int y = 2;

int a = /v // a = 2
float b = x / y; // b = 2.0f
float ¢ = (float)x / y; // ¢ = 2.5f
float d = x / (float)y; // d = 2.5f

3.7. Redefinicién de tipos

Supongamos que nos piden escribir el programa para un censo y tenemos que definir qué
tipo de variables vamos a utilizar para almacenar los ntimeros. Por ejemplo, si el censo fuera

351, a los argentinos nos gusta particularmente no sélo incorporar palabras en inglés si no convertirlas en verbos y
después conjugarlas: yo googleo, tii copypasteas, él postea, nosotros ghosteamos, etc. El resto de los paises de habla
hispana nos suele mirar raro.

24

NOTAS DE TA130 SEBASTIAN SANTISI

un censo barrial me alcanzarfa con variables de tipo short, si fuera un censo nacional de tipo
int pero si fuera mundial necesitaria long. Analizando el problema me surje que para las
necesidades actuales un tipo es mds que suficiente pero esas especificaciones podrian cambiar a
futuro.

Lo que podemos hacer es crear un nuevo tipo que nos permita abstraernos del tipo:

typedef unsigned short cantidad_t;

Esta sentencia crea un “nuevo” tipo cantidad_t que circunstancialmente estd declarado
como unsigned short. Luego podemos declarar variables de este tipo:

cantidad_t habitantes_san_telmo = 25969;

S5i eventualmente necesitdramos redefinir el tipo porque el dominio de mi problema se modi-
ficé, s6lo cambiariamos la especificacién en la linea del typedef por lo nuevo. Automdticamente
todas las variables de tipo cantidad_t se actualizaran.

Ahora bien si bien a veces la necesidad de la redefinicién de tipos es para anticiparse a
futuros cambios de especificacion, muchas este tipo de construcciones simplemente sirven para
obtener més abstraccién en mi cédigo.

Por ejemplo podriamos asumir que ninguna persona en el corto plazo va a vivir mas de 127
afios y mas ain mads de 255, por lo tanto si tuviéramos que declarar variables para almacenar
edades tranquilamente podriamos utilizar alguna variante de char. Ahora bien, en mi programa
no todas las variables de tipo char van a representar una edad y las edades no van a destacarse
como un tipo en si. Si quisiéramos ganar en abstracciéon

typedef unsigned char edad_t;

generaria un nuevo tipo para abstraer el tipo base de las edades. No hay necesidad de redefinir
el tipo a futuro, simplemente consideramos que es mds abstracto declarar una variable edad_t
< edad_juan; que unsigned char edad_juan;.

3.8. printf()

Hemos dicho que el primer pardmetro de printf() es una cadena de formato la cual
la funcién utiliza para saber qué cosas va a imprimir después. También hemos visto que
utilizando " %d" como formato podiamos imprimir nimeros. Ahora bien, no dijimos que " %d"
es exclusivamente para imprimir ntimeros int en formato decimal.

printf () tiene una amplia variedad de modificadores de formato, como por ejemplo:

printf ("Y%dy%fLhey hs\n", 42, 3.14, ’x’, "hola");

define el formato de un int, un float/double, un caracter (los cuales son int lo vimos cuando
vimos literales) y una cadena de caracteres. La salida de esta linea serd "42,,3. 140000, %, hola\
— n".

Estos no son los tinicos, no s6lo hay mas modificadores si no que hay un montén de
opciones que se pueden manipular en la cadena de formato para imprimir los niimeros
alineados, ocupando cierta cantidad de digitos, rellenando con ceros, con el signo explicito,
etcétera, etcétera, etcétera. En el sitio web del curso hay un apunte llamado “Los Secretos de
printf()” de Don Colton, el cual cubre exhaustivamente las diferentes opciones disponibles.
Ese apunte es de lectura obligatoria.

25

Capitulo 4

El proceso de compilacién

Si bien hasta ahora hablamos de la compilacién como si se tratara de un proceso monolitico,
esto no es asi en C. El proceso de compilacién consta de varias etapas diferentes y necesitamos
entender cada una de ellas para construir nuestro programa y solucionar los problemas que
surjan.

El proceso de compilacién se divide en tres etapas diferentes: Preprocesamiento, compilacién
y enlace. Entre las 3 se produce la transformacién de nuestro fuente .c a un ejecutable.

Preprocesador: El preprocesador es el responsable de la etapa previa a la compilaciéon. Es
un programa sencillo que principalmente sabe hacer reemplazos y activar u ocultar
fragmentos del cédigo. Las instrucciones del preprocesador empiezan todas con #. Por
ejemplo ya vimos la instruccién #include, la misma busca el archivo con la ruta indicada,
lo abre, copia su contenido y lo pega completo en el lugar en el que estaba la linea del
#include. Ya vimos que eso servia para, entre otras cosas, traer la declaraciéon de la
funcién printf (). Al proceso de preprocesamiento entra un fuente .c limpio, como lo
genero el programador, y sale un fuente expandido con cosas autogeneradas e informacién
de las bibliotecas.

Compilador: El compilador es el responsable de traducir c6digo fuente en c6digo maquina. El
compilador analiza sintacticamente cada una de las instrucciones sentencias de nuestro
programa y decide la mejor secuencia de pasos de assembly que resuelven eso en nuestra
arquitectura. La salida del compilador se llama “cédigo objeto” y es ya practicamente
cédigo maquina. Es importante destacar que durante la compilaciéon sélo el cédigo que
nosotros escribimos es compilado.

Enlazador: El enlazador o linker es es programa encargado de generar el ejecutable final. El
cédigo objeto que compilamos tiene nuestra parte del programa, pero para que nuestro
programa sea funcional seguramente utilizamos funciones de biblioteca que nosotros
no implementamos. El enlazador puede tomar multiples c6digos objeto y bibliotecas y
estructurar un tnico programa. En ese proceso enalaza las llamadas a funcién que nosotros
hayamos hecho, por ejemplo printf() con el lugar donde esté realmente el cédigo
mdquina de dicha funcién. Ademds en este proceso es que el programa se estructura para
ser un ejecutable, es el enlazador el que define el punto de entrada y verifica que haya un
y s6lo un main().

La idea de que el proceso de compilacién de C no sea monolitico permite estructurar
proyectos de software mas complejos que veremos mucho mds avanzados en la materia. A
esta altura es importante sf entender cémo es que nuestro cédigo se integra con las utilidades
del compilador. En la etapa de preproceso incluimos los archivos de encabezados .h que nos
dicen cémo es la firma de las funciones de biblioteca, lo cual ya es suficiente para encarar la

26

AN Ul = W DN -

NOTAS DE TA130 SEBASTIAN SANTISI

compilacién, mientras que el cdigo mdquina de esas funciones se incorpora recién en el dltimo
paso de enlace donde recibimos cédigo en forma de cédigo objeto .o o de bibliotecas .1ib, .so,
.d11, etc.

Cabe destacar que el dnico proceso realmente caro de la compilacién es justamente la
compilacién. Tanto el preprocesador son programas muy sencillos que hacen operaciones
rutinarias. Este disefio de C que permite compilar pequertios fragmentos de forma individual y
luego juntarlos hace que el proceso sea muy eficiente.

4.1. Interpretando la salida del compilador

Parte importante de la programaciéon en cualquier lenguaje es entender al compilador
respectivo. En cierta medida es el compilador el que tiene la tltima palabra al respecto de la
sintaxis de un cédigo y el compilador intenta decirnos qué es lo que no es correcto en nuestro
programa.

Miremos el siguiente cédigo:

hola.c

#include <stdio.h>

int main(void) {
print ("Hola_ mundo\n") ;
return O;

El mismo tiene un error de tipeo, escribimos print () en vez de printf (). Ahora tomate
el tiempo que necesites, poniendo sobre la mesa todas las cosas que ya presentamos en este
apunte, para pensar qué y como va a fallar durante el proceso de compilacién. ;Qué va a hacer
el preprocesador?, ;qué va a hacer el compilador?, ;qué va a hacer el enlazador?, ;vamos a
llegar a la etapa de compilacién o de enlace o muere primero?

Pensalo, en serio. Es la forma de autoevaluar si estids entendiendo el contenido, o sea,
si podés bajar la teoria a la practica. Si no tenés ni idea de lo que estamos hablando leer la
explicacién que viene a continuacién no te va a aportar nada desde el punto de vista pedagégico.
Esto aplica para este ejemplo y para todo el curso.

Bueno, retomando, nada que pongamos en nuestro céddigo deberia afectar al procesador, a
menos que queramos incluir un archivo inexistente o algo por eel estilo.

El compilador va a atacar nuestro c6digo, ;hay algo malo con la sintaxis de nuestro c6digo?
La realidad es que no, tenemos un main() bien estructurado que llama a una funcién print ().
S1 hay un detalle importante, nadie proveyé la definicién de la funcién print () porque no
forma parte de los prototipos que importamos desde stdio.h ni tampoco dimos una definicién
o declaracién de funcién. ;Qué hacia el compilador cuando se topaba con funciones que no
conocia? Eso ya lo vimos: asumia de lo que vefa, en este caso va a asumir que la funcién
tiene firma int print(char *) ;1 es decir, una funcién que recibe una cadena de caracteres y
devuelve un entero. Una vez hecha esa asuncién el compilador generard el cédigo para llamar
a esa funcién que se imaginé.

Eso si, si bien el compilador puede hacer su trabajo, probablemente considere que tiene que
avisarme de la decisién que tomé. En este caso, el GCC dira algo del estilo de:

hola.c: In function ‘main’:

1,Qué es esa cosa de char *? Cuando estamos aprendiendo la curiosidad es stper positiva, pero en esta materia
vamos a decepcionarte mucho al punto que no vas a querer sentirla. La respuesta a cualquier cosa nueva la mayor
parte de las veces va a ser “Te juro que no querés saber”. Si te hace feliz, digamos que char * vendria a ser el tipo de las
cadenas de caracteres.

27

4.2. PARAMETROS DEL COMPILADOR ~ CAPITULO 4. EL PROCESO DE COMPILACION

hola.c:4:5: warning: implicit declaration of function ‘print’; did you mean
‘printf’? [-Wimplicit-function-declaration]
print ("Hola mundo\n");

Apunte al margen: El idioma de la ingenierfa es el inglés. Esto no es una preferencia nuestra,
lamentablemente es lo que hay. Si todavia no sabés inglés, deberias empezar a aprenderlo. No
lo vas a necesitar para esta materia, pero lo vas a necesitar en todas las materias mds avanzadas
de la carrera. En nuestro caso no es que el compilador tiene infinitos mensajes en la mochila, te
vas a topar con una veintena y més dificil que el inglés es aprender qué cosas rotas en nuestro
cédigo son las que disparan cada uno de esos mensajes y cémo solucionarlos.

Lo primero al respecto de este mensaje es que es una advertencia (warning) no un error.
El mensaje dice “declaracion implicita de la funcién print” lo cual significa “nadie me di6
su firma, estoy adivinando”. Ademds nos dice “;no quisiste decir printf£?”, cuidado con esas
sugerencias, la mayor parte de las veces no son correctas.

Retomando, el compilador genera un cédigo objeto con el c6digo maquina necesario para
llamar a int print(char *); y es el enlazador el que tiene que buscar ese cédigo maquina, el
cual obviamente no existe.

Esta es la salida a continuacion de la compilacién:

/tmp/ccaNYwA8.0: En la funcién ‘main’:
hola.c: (.text+0x11): referencia a ‘print’ sin definir
collect2: error: 1ld returned 1 exit status

1d es particularmente el ejecutable del linker del GCC. Los mensajes de enlazador se
distinguen rdpido de los del compilador en que los de compilador conocen el cédigo fuente, es
decir, nos dicen “en la linea tanto de tal cédigo encontré esta sintaxis”, ahora bien, al enlazador
le llega c6digo maquina, no conoce nuestro cédigo fuente, por lo que sus mensajes son mas del
estilo de “en este archivo, en tal posicién de memoria”, en este caso en hola.c: (.text+0x11).
El mensaje es claro: No existe print (). Mas all4 de que acd sabemos cudl es el error desde el
principio no encontrar una funcién puede ser un error de tipeo, puede ser que la funcién no
existe, puede ser que me olvidé de incluir alguna biblioteca (biblioteca # encabezado).

Observacion al margen: Nos esta diciendo literalmente 1d devolviél como estado de
— salida. Ahi tienen la convencién return 0; = todo bien, cualquier cosa diferente de 0
= error.

4.2. Parametros del compilador

En nuestro primer acercamiento al compilador compilamos el hola mundo sencillamente
como

$ gcc hola.c -o hola.exe

ahora bien, hay mds cosas que prestar atencién en el proceso de compilacién y este es el
momento de introducirlas.

4.2.1. Estandar

Como ya dijimos en este curso vamos a desarrollar C segtin el estandar ISO-C99. ;Por
qué es que es importante programar dentro de determinado estandar? Se trata de un tema
de portabilidad. Nosotros queremos escribir en un lenguaje de alto nivel porque queremos

28

NOTAS DE TA130 SEBASTIAN SANTISI

independizarnos de la plataforma. Para poder independizarnos de ella necesitamos tener
compiladores para las plataformas donde queramos ejecutar nuestro cédigo. Utilizar estdndares
garantiza eso, no vamos a atarnos a lo que, por ejemplo, el compilador GCC considere que es el
lenguaje C sino que vamos a decirle al GCC que nuestro cédigo es compatible con el estandard
C99. Si quisiéramos cambiar de compilador a cualquier otro sélo deberiamos verificar que sea
uno que cumpla con ese estdndar y ya.

El GCC particularmente conoce muchos estdndares y no sabe a priori cudl queremos utilizar
nosotros. Cosas que en una versién de C son correctas en otra no, incluso hay comportamientos
que son diferentes segin la versiéon. Queremos asegurarnos de no introducir cosas que no
pertenezcan a C99.

Para eso debemos agregar en la linea de compilacién -std=c99, y més atn, obligamos a un
cumplimiento mads estricto agregando -std=c99 -pedantic.

4.2.2. Advertencias

Las advertencias del compilador nos avisan de posibles errores semanticos, dado que si
fueran sintacticos no habria compilacién. El 99,9 % de las veces que el compilador identifica
algo para advertirnos eso se corresponde con un error en nuestra logica. Las advertencias son
importantes y en este curso no aceptaremos cédigo que tenga advertencias al compilar.

Ahora bien, el compilador elige sobre qué cosas mostrarnos advertencias o no. Para activar
todas las advertencias del compilador tenemos que agregar -Wall.

Si quisiéramos ser mucho més estrictos podriamos pedirle al compilador que directamente
trate a las advertencias como si fueran errores con -Werror.

4.2.3. Biblioteca matematica

Por razones histéricas la biblioteca de C esta partida en dos: La 1ibc y la 1ibm. La 1ibm
tiene todas las funciones de manipulacién de ntimeros de punto flotante, es decir, la biblioteca
matemadtica, mientras que la 1ibc tiene el resto. En muchas versiones de compilador por omisién
no se enlaza con la 1ibm.

Para agregar a la biblioteca matematica al momento de enlace hay que agregar -1m como
altimo pardmetro de la linea de compilacién.

4.2.4. Entonces

La linea completa recomendada para compilar un programa es:

$ gcc hola.c -o hola -std=c99 -pedantic -Wall -1m

4.3. Constantes

En nuestro cédigo muchas veces necesitamos tener valores de constantes. Las contasntes a
veces pueden ser valores universales como por ejemplo el valor de 7t y otras veces pueden ser
cosas constantes a nuestro programa, como por ejemplo la cantidad de paises en el mundo, que
si las quisiera modificar deberia recompilar mi programa.

Tomemos de ejemplo 77, sabemos que un float soporta aproximadamente 7 digitos deci-
males representativos. Es decir cada vez que necesitemos el valor de 7t deberfamos escribir
3.1415926f2. Escribir mds ntimeros seria innecesario, escribir menos introduciria error en las

2Pusimos 8 digitos porque ya se dijo es aproximadamente 7, no sabemos si el tiltimo se contabiliza, pero es preferible
estar del lado de la seguridad.

29

4.3. CONSTANTES CAPITULO 4. EL PROCESO DE COMPILACION

operaciones. ; Vamos a escribir ese ndmero cada vez?, ;y si manana decidimos migrar de float
a double tenemos que reemplazar todas las ocurrencias por ese valor?

Reemplazar las ocurrencias de 3.1415926 por otro valor es mds o menos automatizable.
Ahora bien, jqué pasaria si hicimos un programa en un momento en el que el mundo tenia 100
paises y, como la provincia de Cérdoba finalmente se independizé, deberfamos actualizar ese
ntimero a 101? ;Estamos seguro que todo 100 en mi programa se correspondia con la cantidad
de paises y no es resultado de otra cosa, como por ejemplo, la nota méxima para calificar en
Quimica, el punto de hervor del agua en grados Celsius, la conversién entre pesos y centavos o
el cdlculo de un porcentaje?

Bueno, para todas esas cosas necesitamos constantes. La idea es definir una constante una
Unica vez, en un solo lugar, ponerle un nombre y usar ese nombre donde haga falta. No sélo va
a mejorar la mantenibilidad si el dia de mafiana quiero modificar una cantidad, ademds va a
ganar mucho en legibilidad porque en una férmula veré un nombre que me habla del ntimero
de paises en vez de una cifra suelta que no sé qué significa.

El lenguaje C provee dos maneras diferentes de generar constantes. Una es dentro del cédigo
de C y la otra es mediante el procesador.

4.3.1. Variables constantes

const float pi = 3.1415926;

Declara y define una variable de tipo float que se llama pi y es constante. ;Variable
constante no es un oximoron?...

Repasemos el concepto de declarar y definir una variable: El compilador busca memoria del
sizeof necesario. Le pone un nombre a esa memoria. Escribe en esa memoria la representacion
binaria de ese valor. Luego cada vez que en una expresion utilice pi eso evaluara a ir a buscar
ese valor a la meoria.

Una variable constante tiene todo eso, con la restriccién de que tengo que definirla en
tiempo de declaraciéon y que luego no puedo modificar ese valor. Cualquier intento que haga
de redefinir pi serd un error de compilacion.

En C se pueden declarar variables constantes y esto puede hacerse fuera de las funciones, al
comienzo del programa y esas variables estardn disponibles para utilizar en todas las funciones.

Ahora bien, esta no es la manera mas comun de resolver el tema de los valores constantes
en C.

Aclaracién: En este curso no se permite bajo ningtin punto de vista la existencia de variables
fuera de las funciones (i.e. globales) que no sean de tipo const.

4.3.2. Etiquetas

Dijimos ya varias veces que el preprocesador es una mdquina de reemplazar cosas por cosas.
La instruccién

#define PI 3.1415926f

define a la etiqueta PI con el valor que sigue a continuacién (notar la ausencia de operador de
asignacion y de punto y coma). En el proceso de preproceso cada vez que el preprocesador vea
la etiqueta PI en el c6digo la reemplazard por el valor literal 3.1415926£3.

Al compilador no le llegard el PI, le llegard directamente 3.1415926f. No hay memoria
asociada, no hay variables, no hay nada, s6lo lo mismo que si hubiéramos escrito el valor de
donde lo necesitdbamos.

3;Por qué pusimos la f en la etiqueta pero no en la variable constante? Porque en el caso de la variable al ser la
variable float la asignacion se trunca a ese tipo y al utilizar pi se utilizard como float. En el caso de la etiqueta al ser
un literal suelto si queremos que sea float tenemos que darle el tipo al literal.

30

NOTAS DE TA130 SEBASTIAN SANTISI

Convencién (importantisimo): En C se utilizan maytsculas si y s6lo si estamos declarando
una etiqueta. Esta es una convencién fuertisima del lenguaje. Si vemos un identificador en
mayusculas vamos a asumir inmediatamente que se trata de un #define. Todas las etique-
tas tienen que estar en mayusculas y todos los identificadores de variables y funciones en
mintsculas.

Y con las etiquetas completamos la coleccién: Los archivos de encabezados de C contienen
basicamente declaraciones de funciones, redefiniciones de tipos con typedef y finalmente
etiquetas con #define. Eso es lo que traemos de la biblioteca cuando hacemos un #include.
Notar que son todas cosas que no definen funcionalidad si no que le avisan al compilador de
qué cosas tiene disponibles para utilizar.

31

O 0 NI O U B W N

=
_ O

Capitulo 5

Control de flujo

Hasta ahora desarrollamos programas donde de forma secuencial se ejecutan todas y
cada una de las lineas del mismo una dnica vez. Llamamos control de flujo a las estructuras
del lenguaje que nos permiten repetir instrucciones o ejecutar bloques de cédigo de forma
condicional.

5.1. El ciclo while

El ciclo while nos permite repetir un bloque de cédigo mientras una condicién sea verdadera.
Por ejemplo:

#include <stdio.h>

int main(void) {

int 1 = 1;

while(i <= 10) {
printf ("Hola\n") ;
i++;

+

printf ("Chaul\n") ;

return O;

El encabezado de la instruccién while lleva entre paréntesis una condicién. Cada vez que se
ejecute el while se evaluard esa condicién, si la misma fuera verdadera entonces se ejecutara el
bloque siguiente. Luego de ejecutar el bloque se evaluard la condicién y se seguird repitiendo
esta secuencia. Si al evaluar la condicién la misma fuera falsa, se seguird ejecutando lo que siga
a continuacién del bloque.

En nuestro ejemplo comenzamos con la variable i valiendo 1. En la primera iteracién se
preguntard si i es menor o igual a 10. Dado que 1 es menor o igual a 10 la condicién serd
verdadera. Entonces se ejecutard el bloque. El bloque hace dos cosas: Primero imprime "Hola\n"
y luego incrementa el valor de i, por lo que la primera iteraciéon terminara con i valiendo 2.
Acto seguido se evaluard de vuelta la condicién, como 1 sigue siendo menor o igual que 10 se
ejecutard el mismo bloque de nuevo, y esto seguird pasando 9 veces mds hasta que después de
imprimir "Hola\n" por décima vez i serd incrementado una vez mas y valdra 11. Al volver a
evaluar i <= 10 esta vez esa expresion serd falsa y el while terminard. Al terminar el while se
imprimird "Chau\n" y luego terminara el programa.

32

X N3 O Ul W N

NOTAS DE TA130 SEBASTIAN SANTISI

7

Miés adelante hablaremos de qué caracteristicas tienen estas expresiones que dan “verdadero”
o “falso” y cudles son los operadores que tenemos disponibles ademds de <=.

5.2. Bloques

Como se dijo anteriormente después de una instruccién de control de flujo viene un bloque.

Ya vimos cuando hablamos de instrucciones que los bloques en C se delimitan entre { y
}. Ahora bien, esto es para generar bloques de miltiples instrucciones. Una tinica instruccién
también constituye un bloque, por lo que si tuviéramos por ejemplo un while que podria
resolverse con una tnica linea podriamos omitir las llaves. Por ejemplo:

int i = 0;
while (i < 10)
printf ("%d\n", i++);

imprimird 0, 1, 2, ... 9 y terminara.

Otra cosa importante de los bloques es la indentacién del cédigo. Cuando anidamos un
bloque dentro de otro bloque debemos incrementar la sangria. En nuestro ejemplo de la seccién
anterior la funcién main () constituye un bloque por lo que su cédigo estd indentado un nivel de
sangria con respecto al #include o a la declaracién de la firma del main(). Ahora bien, cuando
dentro de la funcién main() iniciamos un bloque while volvemos a incrementar la sangria de
todo lo que est4 dentro de él.

La sangria es invisible al compilador y a la sintaxis del lenguaje y podriamos no utilizarla.
Pero es obligatoria para poder entender el alcance de los bloques de un cédigo fuente al leerlo
y no aceptaremos c6digos que no estén correctamente indentados. La sangria es tan importante
que hay lenguajes posteriores a C que no necesitan las llaves para marcar bloques sino que
se gufan pura y exclusivamente por la indentacién. Es decir, convirtieron algo que era una
convencién de estilo en sintaxis del lenguaje.

5.3. El ciclo for

En programacién son muy comunes las iteraciones en las cuales antes de empezar el bucle
hay que inicializar un valor y después de ejecutar el bloque hay que hacer una actualizacién
para la siguiente iteracién. De hecho el ejemplo de saludar 10 veces que ya hicimos tiene esa
estructura.

Dado que este patrén es muy frecuente, el lenguaje C provee una instruccién de flujo que
estd pensada especificamente para estos casos:

#include <stdio.h>

int main(void) {
for(int 1 = 1; i <= 10; 1i++)
printf ("Hola\n");
printf ("Chaul\n");
return O;

by

funciona idénticamente al ejemplo que dimos de while. La instruccién for tiene 3 pardmetros
(jque se separan con ;!): Una inicializacién, la condicion de corte y un incremento, en este
ejemplo int i = 1,i <= 10y i++ respectivamente.

La tinica diferencia operativa entre este ejemplo de for y el ejemplo del while es que en
este caso la variable i existe tinicamente dentro del for, mientras que en el otro ejemplo estaba

33

N Ul W N =

5.4. EL CICLO DO-WHILE CAPITULO 5. CONTROL DE FLUJO

declarada en el main() y era visible en toda la funcién. Si necesitdramos persistir la variable de
iteracion fuera de un for deberfamos declararla antes del mismo.

Si el while y el for hacen lo mismo o son intercambiables entre si, ;vamos a usar los dos?,
(vamos a preferir uno sobre el otro? La idea es que siempre que tengamos una iteraciéon donde
se observe el patrén de inicializacién previa e incremento posterior vamos a preferir usar for.
Es un tema de estilo: En la lectura de la instruccién entendemos por completo cuél va a ser
el comportamiento completo del bloque, incluso aunque este sea muy largo y no veamos su
totalidad. Vamos a dejar el while para iteraciones mas libres donde el comportamiento de la
iteracién va a depender de cosas menos definidas.

5.4. El ciclo do-while

Como con dos iteradores no alcanzaba, existe ademds el ciclo do-while que es una variante
del while:

int n = 7;

do {
printf ("%d\n", n);
n /= 2;

} while(n > 0);

Imprimira 7, 3, 1.

¢Cudl es la diferencia con el while? Que como primero se ejecuta el bloque y luego se
verifica la condicion el ciclo do-while garantiza que el bloque se ejecute al menos una vez. En
el ciclo while si la condicién es falsa desde el inicio nunca se ejecutara el bloque. Una vez que
se ejecutd la primera iteracién el comportamiento de while y do-while es el mismo dado que
ambos son una sucesion de ejecutar bloque, validar corte.

El do-while se usa bastante poco, dado que el patrén que plantea no es muy comun. Suele
ser conveniente por ejemplo para operaciones de interaccién con algo externo: Obtengo un dato
y mientras el dato no valide determinado criterio vuelvo a pedirlo. Como pedirlo y volver a
pedirlo seguramente se haga de la misma forma, con do-while garantizo que al menos se pida
una vez y no duplico el c6digo del pedido como tendria que hacerlo con while.

5.5. Booleanos

Cuando hablamos de la condicién de corte del while, el for y el do-while dijimos que era
expresiones que evaluaban a valores de verdad o falsedad. Este tipo de operaciones se conocen
como operaciones booleanas, y derivan del dlgebra de Boole denominada asf por el matematico
George Boole (1815-1864) que la definié. En este tipo de dlgebra tiene la particularidad de que
se opera sobre conjuntos muy pequefios de valores, en nuestro caso tnicamente dos.

La légica booleana es inherente a la electrénica digital, drea dentro de la cual se encuentran
los procesadores. Lo que define este dlgebra es un conjunto de operaciones que nos permite
operar sobre dispositivos que admiten dos estados: prendido-apagado, magnetizacién positiva-
negativa, tension de 0V-5V, etc. que son la base de los circuitos digitales. Particularmente en
computaciéon pensamos en estados de verdadero-falso.

5.5.1. Booleanos en pre ISO-C99

Si bien la 16gica booleana es parte fundamental de la programacién C no tenia un tipo para
representar a los booleanos en su comienzo, y en realidad durante casi 30 afios desde creado. Si

34

NOTAS DE TA130 SEBASTIAN SANTISI

bien el lenguaje siempre tuvo operadores que devolvian valores booleanos y operaban sobre los
mismos, originalmente no se pensé en contenerlos dentro de un tipo.

Para el lenguaje C anterior al estindar C99 cualquier expresién entera podia ser vista como
un valor booleano. La convencién era sencilla: El valor 0 evaluaba a falso mientras que cualquier
otro valor evaluaba a verdadero. Es decir, si uno operaba una expresién booleana como por
ejemplo 5 < 10 esta expresién hubiera evaluado a cualquier valor arbitrario diferente a cero,
por ejemplo -4654. Uniendo esto con las secciones anteriores, bdsicamente cuando uno utiliza
una instruccién de tipo while (condicion) se ejecutard el bloque siempre y cuando la expresion
condicion evaltie a un nimero diferente a cero.

Por ejemplo el cédigo

for(int i = 10; i > 0; i--)
printf ("Hola\n");

tendra el mismo comportamiento que el cédigo

for(int i = 10; i; i--)
printf ("Hola\n");

En ambos casos se imprimird 10 veces "Hola\n". Dado que i empieza la iteracién en 10
y va a ir decrementando de a una unidad serd una sucesién 10, 9, 8, ... Con estos valores la
expresion 1 > 0 evaluard a verdadero hasta que i alcance el valor de 0, donde evaluaré a falso.
Del mismo modo, la expresion i mirada desde su verdad o falsedad booleana va a evaluar
verdadera hasta que i valga 0 dado que 0 es el tnico entero que se considera falso. Ambas

condiciones son equivalentes en el contexto de esta iteracién'.

5.5.2. Booleanos en ISO-C99

Cuando en el estandar C99 decidieron introducir finalmente variables de tipo booleano
lo hicieron de tal manera de no romper los programas de los 30 afios anteriores. Por lo que
tomaron una serie de soluciones de compromiso que extienden el comportamiento original de
C sin dejar de ser intuitivas para los que codifiquen cédigo ya pensando en el estdindar nuevo.

Como bien dijimos independientemente de que el lenguaje C tuviera o no variables booleanas
los programadores siempre las utilizaron, por lo que es comtin que en cualquier c6digo viejo
hayan definido algtin tipo booleano con typedef o generado simbolos para verdadero y falso
con #define o equivalentes.

Para no chocar con c6digo del usuario los booleanos se implementan con un tipo nativo
llamado _Bool (que no utilizaremos nunca, pero mencionamos sélo por completitud).

El cambio que implementa el lenguaje es que ahora los operadores booleanos devuelven 0 o
1. Es decir, en el estandar C99 la operacion 5 < 10 que vimos anteriormente va a devolver 1.
Y bésicamente este es el tinico cambio que se introdujo. Todo lo que dijimos respecto al pre
ISO-C99 sigue valiendo, cualquier entero puede interpretarse como booleano, cualquier entero
diferente de cero se interpretard como verdadero mientas que el cero se interpretard como falso.
Pero ahora los operadores devuelven sélo 0 y 1.

Como dijimos anteriormente, se introdujo un nuevo tipo _Bool, pero también dijimos que
no fbamos a utilizarlo. En su lugar si vamos a utilizar booleanos lo que haremos serd incluir
el encabezado stdbool.h. El contenido de este encabezado podemos resumirlo basicamente
como:

typedef _Bool bool;
#define false O
#define true 1

Fuera del contexto de esta iteracién pueden no serlo, es decir, la expresién booleana i siempre es equivalente a la
expresién booleana i != 0,noai > 0 como en el ejemplo.

35

5.5. BOOLEANOS CAPITULO 5. CONTROL DE FLUJO

O sea, nos da un tipo bool y nos da las etiquetas true y false?. Nosotros siempre vamos a
utilizar el tipo con este #include.

5.5.3. Operadores

Como ya vimos, hay operadores que dadas expresiones numéricas nos devuelven valores
booleanos, la lista completa de ellos es:

==: La igualdad. Ejemplo: 1 + 1 == 2, evaluacién true.

I=: La desigualdad. Ejemplo: 1 + 1 != 2, evaluacién false.
<: Menor que. Ejemplo: 1 + 1 < 2, evaluacién false.

<=: Menor o igual que. Ejemplo: 1 + 1 <= 2, evaluacién true.
>: Mayor que. Ejemplo: 1 + 1 > 2, evaluacién false.

>=: Mayor o igual que. Ejemplo: 1 + 1 >= 2, evaluacién true.

Todos estos operadores toman expresiones enteras o de punto flotante y devuelven valores
booleanos.

Luego estdn los operadores que toman expresiones booleanas
légicas sobre ellas. Estos operadores son: && (and), | | (or) y ! (not).

3e implementan funciones

El operador && (and)

El operador and del 4lgebra de Boole (de simbolo A en légica proposicional) pregunta si sus
dos operandos son verdaderos, o sea si a y b son verdaderos.

Su tabla de verdad es:
a b a && b

false false false

false true false
true false false
true true true

Es decir, sélo devolverd true si ambos operandos son true.

El operador | | (or)

El operador or del dlgebra de Boole (de simbolo V en l6gica proposicional) pregunta si alguno
de sus operandos es verdadero, o sea si a 0 b son verdaderos (de forma inclusiva).

Su tabla de verdad es:
a b a && b

false false false

false true true
true false true
true true true

Es decir, sélo devolverd false si ambos operandos son false.

2;C6mo?, ;que las etiquetas no tenian que estar siempre en maytsculas? Bueno, las que ponés vos si. El tipo que
escribe estdndares las pone como quiere.

%Y no olvidar que en C las expresiones booleanas pueden ser true, false y el resultado de operar alguno de los
operadores anteriores, pero también cualquier expresion entera en general.

36

O 0 NI O Ul B W N

_ =
_= O

NOTAS DE TA130 SEBASTIAN SANTISI

El operador ! (not)

El operador not del 4lgebra de Boole (de simbolo — en légica proposicional) es un operador
monario que invierte el valor de su operando, o sea devuelve no a.

Su tabla de verdad es:
a I a

false true
true false

5.5.4. Cortocircuito

Supongamos la siguiente expresion booleana: 1 + 1 == 3 && (! 8 % 6 != 0). ;Podés
darte cuenta rdpidamente a cudnto evaliia esa expresién en su conjunto? Bueno, la respuesta de-
berfa sersi. 1 + 1 == 3 obviamente evaltda a false, ;y (! 8 % 6 != 0)?, bueno, bdsicamente
a nadie le importa a cuanto evaltia esa expresion. Si ya dijimos que el tinico caso en el que el
operador and evaliia a true es si ambos operandos evaltian a true y ya estamos viendo que
el primero de los dos operandos evalué a false sabemos que la expresién completa evaltia a
false*.

El lenguaje C entiende el funcionamiento del and y el or y no se toma el trabajo de evaluar
el segundo operando si con la evaluacién del primero ya le alcanza para definir el resultado de
la evaluacién global. Este comportamiento se conoce como cortocircuito.

En la seccién que hablamos de precedencia y asociatividad dijimos que en el lenguaje C no
estaba garantizado el orden de evaluacién de las expresiones. Bueno, no esta garantizado el
orden de evaluacién salvo para and y para or. En el caso de and y or el orden de evaluacién es
siempre de izquierda a derecha.

Por ejemplo, si tuviéramos:

while(n < O || sqrt(n) > 10) {

}

nunca se calcularia una raiz negativa. Si n fuera negativo eso ya es suficiente motivo para
concluir hay que ejecutar el bloque del while. S6lo se computaria la raiz si n fuera positivo y
todavia hubiera que evaluar el segundo operando para saber el resultado global del | |.

5.6. El condicional if

Muchas veces en nuestro coédigo queremos ejecutar algo o no, una tnica vez, dependiendo
de una condicién. Para esto tenemos la instruccién if:

int main(void) {
float n;
//

if(n < 0) {

printf ("No,podemos calcular raices_ negativas!\n");
return 1;

printf ("Lagraiz de,%f esy%f\n", n, sqrt(n));

4Y si te queda la duda (! 8 % 6 != 0) evalta a false. jPor qué?, analizalo, tenés todas las herramientas para
hacerlo y es un buen ejercicio.

37

12
13

= W N -

X N3 O Ul W N

5.6. EL CONDICIONAL IF CAPITULO 5. CONTROL DE FLUJO

return O;

El if fuerza una ejecucién condicional, s6lo se ejecutara el bloque si la condicién evalia a
true.

Y dicho sea de paso: Bienvenidos a nuestro primer main() que devuelve algo diferente de 0.
No sabemos de dénde sali6 el valor de n pero si mi programa sirve para calcular raices y tengo
un valor negativo mi programa no puede hacer lo que tiene que hacer y fallard con un cédigo
de error.

Volviendo, if (condicion) significa “si la condicion es verdadera hacé esto”. Muchas veces
si la condicién es verdadera queremos hacer determinada cosa, pero si es falsa queremos hacer
otra cosa diferente de forma excluyente. Para eso sirve el else. Toda instruccién if puede tener
un else de forma opcional:

if(n >= 0)

printf ("%f°0.5,=,%f\n", sqrt(n));
else

printf ("%f°0.5,=,%fi\n", sqrt(-n));

El else se interpreta como “si no”, es decir, “sin >= 0 ejecutd el primer bloque, si no ejecuta
el segundo”. Notar que el else al ser excluyente con el if es en cierta medida equivalente a un
if (! (n >= 0)), o0 sea, se entra al else si no se entro al if... equivalente pero no igual, porque
la condicién se evaltia una tnica vez al evaluar el if. No importaria que dentro del bloque del
if se modificara el valor de n, si entra al if no entra al else y viceversa: Son excluyentes.

Volvamos dos ejemplos més atrds, al ejemplo del if. VerificAbamos que n fuera positiva para
decidir si calcular o no una raiz... ;no deberiamos haber usado else para calcularla? No, porque
el bloque if terminaba con un return. Es decir, si entrabamos al bloque del if la funcién se
abortaba, por lo tanto todo lo que contintie al bloque del if se va a ejecutar si y solo si no se
entr6 al if. El “si no” estd implicito al terminar el if con return. Y dado que el else seria
redundante no lo escribimos (y en la siguiente seccién vamos a argumentar fuertemente en
contra de escribirlo).

Dado que el else requiere un bloque, ese bloque puede ser cualquier cosa y particularmente
puede ser otro if. Cuando tenemos condiciones mutuamente excluyentes podemos encadenar
tantos bloques if-else como queramos. Por ejemplo:

if (nota < 4)
printf ("Reprobado\n") ;
else if (nota < 7)
printf ("Bien\n");
else if (nota < 10)
printf ("Muy_bien\n");
else
printf ("Sobresalientel\n");

El dltimo else, como todo else es optativo. Lo importante a remarcar de esta construccién
es que cada una de las ramas es excluyente con la anterior. Es decir no es que va a entrar al
segundo if sinota < 7 evaliia positivo la condicién para entrar es (! nota < 4)&& nota < 7
o, dicho de otra forma, nota >= 4 && nota < 7.S6lo se va a preguntar si la nota es menor a 7
si antes se descart6 que no fuera menor a 4.

38

NN U s N -

@

10
11
12
13
14
15
16
17
18

O 0 N O U o W N

I e T S G S Gy S S Y
AN G = W N = O

NOTAS DE TA130 SEBASTIAN SANTISI

5.7. Early return

Los programas de la vida real frecuentemente tienen que hacer muchas validaciones previo
a realizar la accién primaria que necesitan hacer.
Imaginemos que tenemos que realizar una transferencia bancaria:

resultado_t transferir(...) {
resultado_t resultado = EXITO;
if (existe(origen)) A
if (existe(destino)) {
if (saldo(origen) >= cantidad) {

if (mensaje != VACIO) {
_transferir(origen, destino, cantidad, mensaje
—)3
} else {
resultado = ERROR_MSJ_VACIO;
} else {
resultado = ERROR_SALDO;
} else {
resultado = ERROR_DESTINGO;
} else {

resultado = ERROR_ORIGEN;
¥

return resultado;

Es decir, para realizar una transferencia necesitamos que exista la cuenta de origen, la de
destino, que el saldo sea sufiente y que haya un mensaje’; cualquier otro caso serd un error.
Ahora bien, este patrén de validaciones anida indefinidamente if adentro del if anterior
de forma sucesiva y se hace muy dificil seguir qué else se corresponde con cada if.
Miremos qué pasa si cambiamos la estrategia:

resultado_t transferir(...) {
if (! existe(origen))
return ERROR_ORIGEN;

if (! existe(destino))
return ERROR DESTINO;

if (saldo(origen) < cantidad)
return ERROR_SALDO;

if (mensaje == VACIO)
return ERROR_MSJ_VACIO;

_transferir(origen, destino, cantidad, mensaje);
return EXITO;

¢No mejora muchisimo la legibilidad?, ;ahora no es inmediato entender qué validacién dis-
para qué cédigo de error?, Si tuviéramos que agregar una validacién adicional, ;no tendriamos

5Y si bien hay un && implicito entre todas las condiciones no podemos usarlo porque si no no podriamos retornar el
cédigo de error correspondiente.

39

NN U N -

5.8. FUNCIONES Y VARIABLES BOOLEANAS CAPITULO 5. CONTROL DE FLUJO

que tocar mucho menos cédigo? (donde tocar mucho cédigo implica tener mas chances de
equivocarse)

(Qué fue lo que cambiamos entre el primer cédigo y el segundo? Bueno, de eso se trata
el patrén de early return, o “return temprano”: Si ya sabemos el resultado de la ejecucion de
la funcién entonces no seguimos adelante con la funcién. Interrumpimos el flujo de la misma
inmediatamente. No hace falta esperar.

Como dijimos, los programas de la vida real tienden a requerir multiples validaciones antes
de procesar un resultado. La estrategia para tener un early return es validar de forma pesimista,
en vez de decir “sigo adelante si esto que quiero validar estd bien” decimos “interrumpo si esto
que quiero validar estd mal”. Es tan sencillo como eso.

5.8. Funciones y variables booleanas

Muchas veces tendremos funciones que devuelven valores booleanos o variables que los
almacenan. En todos los casos le pondremos a esas entidades nombres que representen una
pregunta. De este modo serd absolutamente claro qué tendra que devolver/almacenar esa
entidad en un caso o el otro.

Para que se entienda, tenemos una funcién bool validar_namero_primo(int n) ;, jcudndo
devuelve true y cudndo devuelve false? En cambio pensemos en la funcién bool es_primo(
< int n) ;. La nomenclatura de la funcién se responde o por si o por no, hay una verdad o
falsedad.

Y maés all4 de eliminar ambigiiedades en convenciones de devolucién este estilo de nomen-
clatura permite ganar en legibilidad de cédigo. Por ejemplo:

if (es_primo(n))

Literalmente se lee “si es primo ejecutar el bloque”.

Ya que estamos, ;implementamos la funcién? Un ntmero es primo si s6lamente es divisible
por 1y por si mismo.

(Podemos validar que un ntimero sea primo de forma directa? La realidad es que no ésta, al
igual que muchas otras validaciones, se realiza de forma indirecta: Lo que podemos verificar es
que un niimero no sea primo, si le encontramos divisores otros que 1 y si mismo. Si para un
determinado ntimero no le encontramos ningtn divisor, entonces podemos decir que es primo.

Pero si hay infinitos divisores, ;cémo podemos probar un nimero contra todos? Bueno,
esto es mas facil, podemos acotar el problema. Una cota inicial podria ser darse cuenta de
que ningn ndmero mayor a un ntimero puede ser divisor. Esto nos elimina una infinidad de
divisores a probar.®

Implementemos la funcién:

bool es_primo (int n) {
for(int 1 = 2; i < n; i++)
if(n % i == 0)
// i divide a n
return false;
return true;

Notemos un par de cosas en esta implementacién. La primera es el uso de early return. Si
encuentro un tnico divisor no sigo adelante con la iteracién: Ya estd, ya sé que n no puede

6;Fs esta la mejor cota?... rdpidamente podrias darte cuenta de que dado que el minimo resultado que da una
divisién es 2 si no encontramos un divisor menor o igual a § no vamos a encontrarlo. Ahora bien, ;es esta la mejor
cota? No, no lo es. Te queda de tarea pensar cuél es.

40

N O G s W N

G = W N -

T = W N =

NOTAS DE TA130 SEBASTIAN SANTISI

ser primo, no gasto recursos. Pensémoslo con un ejemplo, jpodés decidir en un vistazo si el
namero 12312389122343436 es primo? No importa que tenga chiquicientos digitos, si termina
en un ndmero par es divisible por 2, ya est4.

La siguiente cosa a destacar es la inexistencia de else. No es if(n % i == O)return
— false; else return true;. Para llegar a la conclusién de que el niimero no es primo no
me alcanza con que no sea par (el primer valor de mi iteracién) necesito probar con todos
los valores de i. El return true; del final se ejecuta dnicamente si el for termina sin haber
entrado nunca al if.

5.9. breaky continue

Volviendo a los ciclos while, for y do—while hay dos instrucciones que los alteran y que tiene
sentido explicar ahora que ya conocemos el condicional if dado que se usan en combinacién
con él.

Los tres ciclos que tiene C se interrumpen si la condicién de corte evaltia a false. Simple.
Ahora bien, hay veces donde hay muchas cosas que deberian interrumpir un ciclo, y meter
todas las condiciones de corte como parte de la condicién implica hacer cédigo complicado,
requerir variables auxiliares que sirvan como centinelas para cortar, etc.

Por fuera de la condicién de corte principal, cualquier ciclo se puede interrumpir con la
instruccion break:

while(n > 0) {
if(n % 42 == 0)
break;

printf ("%d\n", n);
n -= 3;

La condicién de corte principal esn > 0, ahora bien, hay una segunda condicién que puede
interrumpir el ciclo. Si n fuera divisible por 42 el ciclo se termina, sin siquiera llegar al printf ().
Notar que no tiene sentido poner el break fuera de un if, si el break estuviera dentro del
bloque del while no habria iteracién dado que se interrumpe siempre a la primera ejecucion.

Otras veces sucede que si se da determinada condicién queremos saltearnos la ejecucion del
bloque y “continuar” a la iteracién siguiente. Por ejemplo:

for(int 1 = 1; i <= 10; i++) {
if(i % 3 == 0)
continue;
printf ("%d\n", i);

Imprimiria los ntimeros del 1 al 10, saltedndose los multiplos de 3. continue interrumpe el
bloque y salta al ciclo siguiente.

Asi como break nos evita tener que complejizar la condicién de corte, continue nos evita
tener que meter el resto del bloque dentro de un gran else.

Notar que el cédigo equivalente con while deberia ser:

int i = 1;
while (i <= 10) A
if(i % 3 == 0) A
i++;

continue;

41

O 0 N O

O 00 NI O Ul B W N

N N RN = = = e e e e e
N P, © O 0 N1 O U k= W N = O

5.10. EL CONDICIONAL SWITCH CAPITULO 5. CONTROL DE FLUJO

}
printf ("%d\n", i);
i++;

En el for como el incremento estd fuera del bloque esta garantizado que se ejecute inde-
pendientemente de si el bloque fue ejecutado en su totalidad o no. En cambio si en un while
tuviéramos un incremento el mismo no tiene ninguna jerarquia adicional con respecto al resto
del bloque, es una instruccién mas. Este es uno de los tantos argumentos a favor de usar for
siempre que tengamos una iteracién con un comportamiento de inicio, condicién, incremento
definidos.

(Qué pasaria si en el ejemplo anterior olviddramos el i++ dentro del if? El bucle jamés
terminarfa, porque el valor de i quedaria fijo en un valor multiplo de 3. Siempre podemos
utilizar la tecla Control + C para matar la ejecucién de un programa.

5.10. El condicional switch

Hay una construccién de control de flujo del lenguaje C que tiene una aplicacién acotada
y es el condicional switch. Un bloque switch nos permite evaluar diferentes valores exactos
de una variable entera. Y las dos palabras que estdn en negrita en la oracién anterior son las
que hacen que la aplicacién sea acotada: Si no tenemos variables enteras y chequeos exactos no
sirve.

La sintaxis es asf:

switch(nota) {

case 4:
printf ("Aprobaste raspando\n");
break;

case 5:
printf ("Peor_es_ nadal\n") ;
break;

case 6:

case 7:
printf ("Bien!\n") ;
break;

case 8:

case 9:
printf ("Muy_ bien!\n");
break;

case 10:
printf ("Excelente\n");
break;

default:
printf ("Qué, vergienza!\n");
break;

nota es la variable entera a evaluar. Cada case evaltia un valor exacto particular. Una vez
que se entrd por igualdad en un case se va a ejecutar todo lo que venga a continuacién hasta
encontrar un break (si no hubiera break va a seguir de largo, no importa que se metiera en
otros case). De forma opcional puede haber un default que se ejecutaria sélo si no hubo
coincidencia con ninguna de las etiquetas de los cases.

42

NOTAS DE TA130 SEBASTIAN SANTISI

Cabe destacar que switch no es una iteracién, aca la palabra reservada break se reutiliza
para algo que no tiene nada que ver con la funcién en ciclos ya vista.

Y remarquemos de nuevo: Los valores de comprobacién tienen que ser exactos, no hay
forma en el switch de decir en un case “si estd entre tanto o tanto” o enumerar valores. Cada
testeo exacto necesita de su case.

La instruccion switch existe porque es muy ttil en algunos contextos de bajo nivel. Dado
que la evaluacién de la variable se hace una tnica vez y se chequea por valores exactos, la
misma puede ser compilada de forma muy eficiente como una tabla de basqueda (lookup table).
Para c6digo de alto nivel suele ser mucho mas comdn utilizar un patrén de if-else como se
mostré en un ejemplo anterior.

5.11. El operador condicional

Ademds de los operadores aritméticos, de asignacion y booleanos que ya vimos el lenguaje
C tiene un operador condicional. Va por enésima vez pero repasemos: Un operador es un tipo
de expresion que toma un ntimero de operandos y evalda a un valor.

El operador condicional de C es el tinico operador ternario, es decir, que tiene 3 operandos.
La sintaxisesa ? b : c.Si a es verdadero evaltia a b, si no evalta a c. Ejemplo: max = (x >
< y)? x : y;,sixes mayor que y entonces evaltia al valor de x, si no al de y, en max se va
a asignar el maximo de los dos. Ejemplo: volumen = (control < 100)? control : 100;, si
control es menor a 100 usa el valor que tenga, si no lo limita a 100.

Es importante destacar que estamos ante un operador. No una instruccién de control de
flujo. Y si queremos recordar qué es un operador... me tomé el trabajo de definirlo hace dos
pérrafos. El operador condicional no reemplaza al if, no es intercambiable con él, no nos sirve
para o hacer una cosa o hacer otra cosa. El operador, como operador, nos sirve para evaluar a
uno de dos valores diferentes en el medio de una expresién.

Por fuera de eso, la sintaxisde a ? b : c es confusa de leer cuando uno no esta acostum-
brado, pero es un operador que permite economizar mucho cédigo cuando se utiliza para evitar
escribir estructuras de control de flujo. Por poner un ejemplo:

printf ("Faltan, %dyminuto %syuy, hdsegundo %s\n",
minutos, minutos == 1 7 "" : "s" segundos,
— segundos == 1 7 "" : "g");

Si tuviéramos minutos = 5, segundos = 1 imprimirfa "Faltan 5 minutos y,1,segundo
— \n". ;Es criptico? seguro. Ahora bien, si lo hicieras con if necesitarias 8 lineas de c6digo
para obtener el mismo resultado.

5.12. goto

La primera regla del club del goto es no utilizar goto.
Es una instruccién stper practica para gente que sabe. Ustedes no saben. Esta prohibido
utilizarlo en el curso.”

“Pero el dia que sepan tsenlo, es muy practico, para algo estd.

43

= W N -

Capitulo 6

Arreglos

Con las herramientas vistas hasta el momento podemos declarar cuantas variables como
queramos, ahora bien el acceso a cada una de esas variables necesita la escritura de cédigo
especifico para manipular a cada una de ellas. Imaginemos que tenemos un problema donde
tenemos que guardar multiples valores de una misma especie, por ejemplo, para 50 alumnos en
un curso queremos almacenar su nota de parcial. ;No se haria insostenible mantener variables
notal, nota2, nota3 ... notab0 y escribir cddigo para acceder a cada una de ellas?, ;y qué
harfamos si el cuatrimestre siguiente tuviéramos 60 alumnos en vez de 50?

El lenguaje de programacion C permite declarar paquetes de variables del mismo tipo. Estos
paquetes se llaman arreglos o arrays o vectores. Un arreglo consiste en un bloque de memoria
consecutivo con espacio suficiente como para almacenar # variables de determinado tipo y cada
una de esas variables puede ser accedida de forma individual utilizando el nombre del paquete
y un ndmero que representa su indice. La linea:

int valores [4];

declara un arreglo de nombre valores que contiene 4 elementos cada uno de tipo int. Dado
que no definimos el arreglo, cada uno de estos enteros contendré basura.
Podemos acceder a cada uno de estos enteros y definirles un valor:

valores [0] = 10;

valores [1] = 20;
valores [2] = 30;
valores [3] = 40;

Dentro de valores tenemos 4 variables de tipo int que estdn numeradas entre 0 y 3. Todo
arreglo de n elementos tiene sus elementos entre las posiciones 0 y n — 1. Cada uno de los
valores[i] se comportard como una variable de tipo int independiente de las demés y con
todas las reglas que ya conocemos.

El lenguaje C también permite definir nuestro arreglo en bloque el momento (y sélo en el
momento) de la declaraciéon:

int valores[4] = {10, 20, 30, 40};

En este caso pedimos memoria para 4 elementos int inicializados con los valores entre las
llaves.

Siendo que estamos inicializando con 4 valores podemos omitir la longitud:

int valores[] = {10, 20, 30, 40};

44

NOTAS DE TA130 SEBASTIAN SANTISI

generard el mismo arreglo que en el ejemplo anterior. El compilador contara cuantos valores se
definen y declard al arreglo con ese tamario.
En caso de dar un tamafio y definir con una cantidad diferente:

int valores[4] = {10, 20};

el compilador declarara un arreglo de 4 enteros y definira TODOS los elementos del arreglo.
Los primeros dos, que estan especificados, con 10 y 20 y los otros dos con 0. Si, por ejemplo,
quisiéramos inicializar en cero un arreglo de una cantidad arbitraria de elementos podemos
utilizar esto a nuestro favor y definirlo como {03}, esto forzara la definicién del primer elemento...
pero eso disparard que se definan todos los restantes.

Es importante destacar que inicializar un arreglo es un proceso costoso que requiere que el
compilador itere sobre la memoria. No vamos a inicializar los valores de un arreglo a menos
que nuestro problema lo requiera.

Ademas se pueden inicializar posiciones especificas de un arreglo, por ejemplo:

int valores[4] = {[3] = 40, [1] = 20, 30%};

inicializa la posicién 3 con 40, la posicién 1 con 20 y la siguiente a 1, es decir la 2, con 30.

Vamos a focalizar sobre algo que ya se dijo: Cuando declaramos un arreglo generamos un
paquete que contiene en su interior n variables de un determinado tipo. C no provee ninguna
herramienta para, por ejemplo, imprimir un arreglo. ;Cémo imprimimos entonces un vector?,
bueno, como cada uno de los elementos individuales que contiene, que pertenecen a tipos
bésicos que sabemos operar.

6.1. La memoria de los arreglos
Como se dijo previamente, cuando uno declara un arreglo el compilador reserva un paquete

de memoria consecutiva de tamafio suficiente como para contener nuestros elementos. En el
ejemplo

int valores[5];

como sizeof (int)= 4! entonces el compilador reservara 20 bytes de memoria consecutivos, 5
veces los 4 bytes que necesita cada uno de sus enteros.

De esa memoria el compilador sélo recordara que la memoria comienza en una posicién
determinada, por ejemplo la posicién de memoria 0xA4. Para el compilador, internamente,
valores va a ser recordado por su posicién. Esto no es algo particular de arreglos, ya se
menciond que asi funciona siempre que se declara una variable. El nombre de la variable es
un identificador recordable para nosotros los programadores, el compilador conoce en qué
posiciéon de memoria asigno esa variable.

¢Y cémo accederd el compilador a la memoria de cada uno de los elementos particulares de
mi arreglo? Pues haciendo cuentas. El compilador sabe que el primer elemento estd, en nuestro
ejemplo, en la posicién 0xA4. Si cada elemento mide 4 bytes el segundo elemento estar4 en la
posicién 0xA8, el siguiente en la posicién 0xAC? y asi (figura 6.1).

Es decir, internamente para nuestro ejemplo cada elemento i-ésimo se encuentra en memoria
en la posiciéon 0xA4 + i * 4.

1Vamos a recordar por tinica vez que, salvo para sizeof (char) todos los sizeof dependen de la plataforma y
del compilador pero en este curso vamos a utilizar de ejemplo al GCC en 64 bits. Es la tltima vez que haremos esta
aclaracién.

2Las direcciones de memoria suelen expresarse en hexadecimal. Como el hexadecimal tiene 16 simbolos, cuando se
nos acaban los simbolos del 0 al 9 del decimal continuamos con letras, de la A a la F. La C representa el valor 12, y es
légico que 8 +4 = C.

45

6.2. EL TIPO SIZE_T CAPITULO 6. ARREGLOS

2.0
—
2 4 5
oxAC B2 Ox$e Ox 8]

Ox Ak 4+ kS12< 08 () = &AC

v orss L2) =

Figura 6.1: Esquema del arreglo valores y del acceso a valores[2].

Deberia tener todo el sentido ahora que en C el primer elemento sea el de la posicién 0, es
simplemente porque es donde arranca la memoria del arreglo.

(Por qué es importante entender como funciona la memoria en los arreglos? Porque la
siguiente pregunta que tenemos que hacernos es: ;Qué hace C si quisiera acceder por encima
del indice # — 1 en un arreglo de n elementos?

La pregunta se responde con el primer capitulo de este apunte. Cuando en ingenieria
disefiamos un producto tenemos objetivos y lineamientos previos al disefio. La realidad es
que no hay productos buenos y malos en absoluto, serd bueno un producto que cumpla con
sus objetivos y malo uno que no. Recordemos entonces para qué se cre6 C: Se necesitaba un
lenguaje que sirviera para escribir sistemas operativos, que las operaciones sean traducibles
directamente a assembly, que no haga nada que el programador no pidié explicitamente hacer.

Asf como en C la memoria de las variables no se inicializa si no las definimos o asi como
en C los overflows simplemente ocurren, si queremos acceder por fuera de la memoria de un
arreglo nuestro programa intentara hacerlo. Es un comportamiento totalmente deseable... no
deseable para un programador, pero si deseable segiin las premisas de disefio y segin lo que
espera alguien que va a programar economizando recursos.

Si en nuestro ejemplo anterior accediéramos a valores[5] el compilador haré la cuenta
OxA4 + 5 * 4 = 0xB4y accederd a esa posiciéon de memoria. Que estd fuera de la memoria de
nuestro vector. Es un error gravisimo, es un error que puede hacer que el sistema operativo
mate a nuestro programa, o puede hacer que nuestro programa tenga un comportamiento
erratico o incluso abrir un bache de seguridad importante, pero no es un error del lenguaje, es
un error del programador.

6.2. El tipo size t

No hay dos arquitecturas de procesador iguales, y esto aplica también a cudnta memoria
puede administrar determinado procesador o plataforma. Por ejemplo el procesador MOS6502,
que es el procesador que estaba en todos los videojuegos y consolas de los "80s y principios
de los "90s, era un procesador de 8 bits, sin embargo cuando se trataba de memoria RAM
podia manejar direcciones de memoria de 16 bits®. Mientras que las PCs generalmente pueden
indexar tanta memoria como la capacidad del procesador, por ejemplo una Intel 80286 de 16

3Y si no lo hubiera hecho no hubiera podido usar mas de 256 bytes de memoria, con 16 bits eso se expande a 65536.
Recordemos que la memoria no sélo sirve para almacenar variables, también es donde se encuentra el c6digo maquina
de nuestro programa.

46

O 00 NI O U B W N

[e T S = T T
N O G N~ O

NOTAS DE TA130 SEBASTIAN SANTISI

bits indexaba 16 bits, la Pentium III de 32 utilizaba 32 y un procesador actual de 64 indexa 64.

La pregunta que cabe hacerse es, si tuviera que almacenar una cantidad referida a tamafios
de memoria, ¢cudl serfa la mejor variable para hacerlo?, ;short, int, long? Ya que estamos
un comentario al margen, histéricamente el tamafio de palabra del procesador era lo que se
utilizaba para las variables int, sin embargo ya vimos que en el GCC de 64 bits en vez de
tener int de 64 se tienen de 32... lo cual incluso subvierte hasta poder adivinar la capacidad de
memoria en funcién del tipo int.

La pregunta que hicimos en el pérrafo anterior no tiene respuesta satisfactoria. La tinica
respuesta posible seria “usa el tipo mds grande y eso te va a dejar seguro”, pero tal vez el tipo
mads grande sea ineficiente tanto en memoria como en operatoria porque si el hardware no lo
soportara se requeriria operarlo por software que es groseramente mas lento.

Para responder a esta pregunta tenemos el tipo size_t. El tipo size_t es un tipo provisto
por el compilador. Como el fabricante del compilador sabe en qué plataforma esta y qué
decisiones de mapeo de tipos utiliz6 sabe cudl es el tipo adecuado para guardar una cantidad
de memoria que va a funcionar correctamente en esa plataforma. Por lo tanto se tomé el trabajo
de hacer un typedef para size_t con el tamafio adecuado.

En C size_t es el tipo de los indices de los vectores, también es el tipo de lo que devuelve
sizeof.

Es tan generalizado el uso de size_t y tan opaco qué tipo tiene detrds que incluso hay
definido un formato para imprimir variables de tipo size_t en printf ():

printf (" %zd\n", sizeof (int)); // Imprimiria 4

En este curso vamos a utilizar size_t siempre que manipulemos cantidades de memoria o
indices de arreglos.

6.3. El problema del sizeof de los arreglos

Supongamos el siguiente ejemplo:

#include <stdio.h>
void f(int wvalores([]) {

printf ("%p\n", valores);
printf ("%zd\n", sizeof (valores));

int main(void) {
int valores[] = {1, 2, 3, 4, 5};

printf ("%p\n", valores);
printf ("%zd\n", sizeof (valores));

f(valores);

return O;

by

y volvamos a asumir que valores vive en la posicién 0xA4 de memoria. Al ejecutar el programa
los printf () del main() imprimirfan 0xA4 y 20 respectivamente. No hay mucho mds que decir,
por un lado " %p" es el modificador que utilizamos para imprimir posiciones de memoria y por
fuera de eso ambos valores son lo esperado.

47

= W N =

NN U N

N Ul = W DN -

6.4. ARREGLOS MULTIDIMENSIONALES CAPITULO 6. ARREGLOS

Ahora bien, dentro de la funcién f () se imprimiran 0xA4 y 8 respectivamente. ;Qué? Eso.
No parece tener sentido, ;no?, ;la variable valores que pertenece a () contiene la misma
posicién de memoria que la variable valores que pertenece al main()? ;Por qué 8 si el vector
tiene 5 enteros y deberia totalizar 20?

En este capitulo no responderemos ninguna de estas preguntas. Sélo presentamos el proble-
ma. No importa el tamafio del vector el sizeof dentro de una funcién sera siempre 8 y hay
algo en cémo funciona C que hace que, para arreglos, la variable dentro de la funcién copie la
direccién de la variable fuera.

Notar que dentro de la funcién que declaré un arreglo podriamos utilizar sizeof para saber
la cantidad de elementos del mismo:

void f(void) {
double valores([] = {1, 2, 3, 4, 5};
size_t n = sizeof (valores) / sizeof(valores([0]); // Da b5

No importa el tamafio del tipo de los elementos, si dividimos el tamafio de la memoria total
por el tamafio de uno de los elementos obtendremos el niimero de elementos. Sélo dentro de la
funcién que lo declara, como vimos antes.

Esto que vimos referido a las funciones tiene consecuencias importantes en la practica.
Supongamos que queremos implementar una funcién que reciba un arreglo de enteros y
devuelva el promedio de sus elementos. La firma no podria ser float promediar(int all); a
menos que haya una forma externa de conocer la longitud del arreglo a, porque el problema
me lo defina de alguna forma. De forma genérica siempre debera recibir el tamafo:

float promediar (int al[], size_t n) {
int suma = 0;
for(size t 1 = 0; 1 < n; 1i++)
suma += alil];

return (float)suma / n;

Notar que tanto para el tamafio como para el indice de iteracién utilizamos size_t. Notar
ademads que estd funcién es genérica con respecto al tamafio del arreglo, funciona para arreglos
de cualquier tamafio. Cuando nosotros escribimos una funcién de bajo nivel no conocemos cudl
es el contexto en el cual la misma va a ser utilizada. Siempre vamos a elegir disefiar funciones
genéricas que se adapten a cualquier tamafio de problema.

6.4. Arreglos multidimensionales
En C podemos declarar arreglos de mds de una dimension, es decir arreglos de arreglos. Es

lo que vamos a utilizar, en principio, para modelar matrices.
La expresion:

int m[4][3] = {
{11, 12, 13},
{21, 22, 237},
{31, 32, 33},
{41, 42, 43},
+s

declara una matriz de 4 filas y 3 columnas que en Algebra podriamos pensar como:

48

= W N =

= W N =

NOTAS DE TA130 SEBASTIAN SANTISI

e DD mE
— — _———\(--;*;\'

{'VHE‘L.’LE’D

M \

Figura 6.2: Esquema de la matriz m y elemento m[2] [1].

11 12 13
21 22 23
M= 31 32 33
41 42 43

Podemos acceder a cualquier elemento de la matriz utilizando dos indices, por ejemplo
m[2] [1] es el elemento de valor 32 dado que se trata de la tercera fila y segunda columna.

Internamente la memoria se agrupa de forma lineal, una fila a continuacién de la otra:
{11, 12, 13, 21, 22, 23, 31, 32, 33, 41, 42, 43}* ;Cémo hace el compilador para dar-
nos la ilusién de que la memoria es bidimensional?

C en realidad ve a m como un arreglo de 4 elementos donde cada elemento es un arreglo
de 3 enteros. Por eso empezamos diciendo que los arreglos multidimensionales son arreglos
de arreglos. Cuando el compilador procesa la expresiéon m[2] [1] primero ataca m[2]. Sim es
un arreglo de arreglos, entonces m[2] es el tercero de esos arreglos y es el que declaramos
como {31, 32, 33}. ;Cémo llega a eso?, haciendo la misma cuenta que ya desarrollamos para
arreglos unidimensionales. Si cada elemento de m es un arreglo de 3 enteros entonces el sizeof
de cada elemento es 3 x 4 = 12. Cuando decimos m[2] entonces va a saltearse 2 * 12 desde el
inicio y va a ir al byte 24, es decir, 6 enteros més adelante que el comienzo de la memoria. Es
decir, va a estar sobre la memoria que se corresponde con el valor 31. Luego aplica [1] sobre
ese arreglo {31, 32, 33} es decir, se saltea 4 bytes. Ahi obtiene que m[2] [1] se corresponde
con el 32 (figura 6.2).

Notar que genéricamente para m[i] [j] el compilador se mueve i * 3 + j unidades de
enteros desde el inicio de la memoria.

6.4.1. Pasaje de matrices a funciones

El pasaje de matrices a funciones es otra de las cosas que vino a solucionar el estindar C99
y que en los 30 afios previos no funcionaba de un modo natural.
Supongamos que tenemos definido:

int m([2] [3] = {
{0, 1, 2%},
{3, 4, 5},
+s

y queremos pasarle esa matriz a una funcién que incialice en 0 cada uno de sus elementos.
En las variantes de C previas a C99 deberiamos haber implementado algo de este estilo:

void funcionil(int m([2][3]) {
for(size t £ = 0; f < 2; f++)
for(size t c 0; c < 3; c++)

m[f][c] 0;

4Ordenar primero por filas es lo que se conoce como row-major order, no todos los lenguajes usan esta convencion.

49

O = W N =

O = W N =

6.5. ARREGLOS DE LARGO VARIABLE (VLA) CAPITULO 6. ARREGLOS

b

e invocado funcionl(m) ;. Notar que es lo que dijimos que no queriamos, nosotros queremos
tener funciones genéricas que operen con arreglos (y matrices) de cualquier tamano. jPor qué
una funcién que opera s6lo con matrices de 2 x 3 si podrfamos hacerlo con matrices de tamafio
arbitrario.

Bueno, previo a C99 lo mas “genérico” que podiamos obtener era esto:

void funcion2(int m[][3], size t fs) {
for(size_ t f = 0; f < fs; f++)
for(size_ t ¢ 0; c < 3; c++)
m[f][c] = 0;

3

e invocado funcion2(m, 2);.En el pasaje de matrices a funciones puede omitirse la primera
dimensién como parte del tipo. ;Sabemos explicar por qué la primera dimensién no importa
pero si las demads? 5, claro, es lo que vimos en el capitulo anterior. Dentro de las dos funciones
que definimos hasta ahora cuando se accede a m[f] [c] el compilador tiene que hacer una
cuenta que involucra moverse £ * 3 + c enteros con respecto al comienzo de la matriz®. Notar
que en esa cuenta importa la cantidad de columnas pero la cantidad de filas nos tiene sin
cuidado. C necesita tener definido ese ndmero para poder computar el acceso a la memoria.

Seguimos sin tener funciones genéricas.

En el estdndar C99 se introdujo una sintaxis nueva que es la siguiente:

void funcion3(size t fs, size_ t cs, int m[fs][cs]) {
for(size_ t f = 0; f < fs; f++)
for(size_t c 0; ¢ < cs; c++)
m[f][c] = 0;

b

que invocarfamos funcion3(2, 3, m) ;. Finalmente tenemos funciones para matrices genéricas,
podemos pasarle matrices de cualquier dimensién. Pero estamos obligados a que las dimensio-
nes estén en la firma de la funcién antes de la matriz. Notar que no es que no especificamos
el tamarfio de m, estamos diciendo que m tiene cs columnas (podriamos omitir las filas) por lo
tanto el pardmetro cs tiene que venir antes en la definicién de funcion30).

Dado que en este curso utilizamos el estindar C99 preferiremos la variante de funcion3(),
incluimos las demds por contexto histérico.

6.5. Arreglos de largo variable (VLA)

En el estandar C99 se introdujeron los arreglos de largo variable (VLA por las siglas de
variable length array). En un VLA el tamafio del arreglo puede ser definido por una variable:

size_t n;
// Asigno un valor para n
int v[n];

En versiones previas del lenguaje los tamafios de los vectores tenian que ser ntimeros fijos
definidos en tiempo de compilacién, dado que la asignacién de la memoria se hacfa de forma
estética.

En el ejemplo anterior, el vector v se crea con el tamafio que tenga el valor de n en el
momento de la declaracién. Una vez que v esta creado su tamafio ya no cambia.

5Que por lo que vimos en el capitulo de arreglos y sizeof estd codificado en m.

50

NOTAS DE TA130 SEBASTIAN SANTISI

S
\194 L‘ll\ 1ee| 9% \ Q \L
o i gl 3 4 S

A

Figura 6.3: Esquema del arreglo que contiene la cadena "hola".

Si bien los VLA son una herramienta ttil del lenguaje, su uso debe ser evitado. En préximos
capitulos desarrollaremos mas sobre cémo funciona la memoria y veremos que el tamario
maximo de los vectores que estuvimos manipulando hasta el momento es muy limitado. Querer
crear un vector con un largo grande va a hacer que nuestra aplicaciéon se rompa, por lo que los
VLA no son la herramienta para generar vectores de tamafio adaptativo a los problemas. Sélo
nos van a servir si el tamaro del vector estd acotado. Mas adelante en el curso veremos técnicas
para resolver este tipo de problemas.

6.6. Cadenas de caracteres

Venimos utilizando cadenas de caracteres desde el hola mundo, son precisamente el "Holay,
— mundo\n" que le pasamos como pardmetro a printf (). Las cadenas de caracteres son un
caso particular de arreglos de char con un par de reglas adicionales propias.

En primer lugar repasemos que un caracter se almacena en memoria como un ntmero. La
equivalencia entre ntimeros y caracteres que solemos utilizar es la dada por la tabla ASCII®.
Dicha tabla define 127 caracteres que podemos identificar con su respectivo nimero el cual
puede ser almacenado sin problemas en un byte.

Bien, volvamos ahora sobre el hola mundo:

printf ("Hola_ mundo\n") ;

Si las cadenas de caracteres son arreglos de caracteres, entonces a printf () le estamos
pasando un arreglo... ;Pero no era que si pasdbamos un arreglo a una funcién teniamos que
ademds pasar su longitud? Si, siempre y cuando no haya informacién adicional para inferir esa
longitud.

Las tres instrucciones siguientes son totalmente equivalentes entre si:

char s[] = "hola";
char s/[] {104, 111, 108, 97, 0};
Char S[] {’h’, JO’,)1;7 78.),)\O)};

Es decir, las 3 lineas declaran un arreglo de 5 caracteres y lo definen con los ASClIs
correspondientes a la h, la o, la |, la a... y el cardcter 0 de la tabla ASCII, llamado NUL y
representado en C con el literal *\0’ (figura 6.3).

S5i bien cuando se desarrollé C el disefio de sus cadenas de caracteres fue novedoso no hay
magia negra en el hola mundo: printf () sabe la longitud de la cadena que recibe porque la
misma estd delimitada. Su dltimo caracter es un centinela que dice que no hay que seguir mas
alld de él. En realidad no sabe la longitud, pero puede calcularla sencillamente iterando cada
uno de los caracteres.

Notar una sutileza, el parrafo anterior dice “sabe la longitud de la cadena que recibe” y no “sabe
la longitud del arreglo que recibe”. Arreglo y cadena son dos cosas diferentes:

®ASCII: American Standard Code for Information Interchange, es decir cédigo “americano” estandar para el
intercambio de informacién.

51

6.7. ENCABEZADO STRING.H CAPITULO 6. ARREGLOS

char s[100] = "hola";

En este ejemplo tenemos un arreglo s de longitud 100, ahora bien, la cadena contenida en
dicho arreglo mide 4: h, o, 1, a. La relacién entre arreglo y cadena es que la longitud del arreglo
tiene que ser al menos uno més que la longitud de la cadena, para poder almacenar el *\0’.
Pero arreglo y cadena son cosas diferentes. El arreglo es el contenedor en el cual vive la cadena.

S6lo por formalizar vamos a definir a la cadena como una sucesién de caracteres en memoria
finalizados con un ’\0’. Y vale destacar que esto es un caso particular de arreglos y mas atin
un caso particular de arreglos de caracteres.

6.7. Encabezado string.h

TODO

6.8. Entrada y salida (I/0)

La comunicacién de nuestro programa con el exterior se da en principio por cadenas de
caracteres’. Desde el primer ejemplo vimos que podemos imprimir una cadena con printf ().
Ahora vamos a profundizar un poco en esa comunicacion.

Un programa en C se comunica con el exterior mediante tres flujos (streams) diferentes:
stdin, stdout, stderr. El primero es un flujo de entrada, los otros dos son flujos de salida.

¢Y qué son los flujos?, los flujos son colas de comunicacién en los cuales se acumulan
caracteres. Cuando nosotros imprimimos con printf () estamos escupiendo caracteres de a
uno por vez a stdout. stdout va a acumular esos caracteres en una memoria intermedia,
llamada buffer, y cuando sea conveniente esos datos se van a mostrar por la pantalla u otro
lugar equivalente. Se llaman flujos por eso, son un caudal de informacién que viaja en un
determinado sentido, no hay ningtin tipo de orden superior a ese continuo de bytes.

Como se dijo, los flujos se separan entre flujos de entrada y de salida. En los de entrada
hay algtn agente externo (por ejemplo un usuario tipeando en su teclado) que esta dejando
cosas dentro de un buffer que van a almacenarse ahi hasta que nosotros nos decidamos a
leer caracteres de a uno por vez. Mientras que en los flujos de salida nosotros depositaremos
caracteres en un buffer, hasta que los mismos se liberen al exterior (por ejemplo al monitor del
usuario).

6.8.1. Salida

Si quisiéramos imprimir un byte en stdout podemos utilizar:

putchar (*h’);

imprime la letra *h’ en stdout.
Tenemos dos funciones que trabajan con cadenas:

puts("hola");
printf ("%d\n", 42);

La primera imprime "hola\n" por stdout. Prestar atencién al ’\n’ que agreg6 aunque
nosotros no lo incluimos. La segunda es una vieja conocida e imprime "42\n". Cuando decimos
“imprime” en todos los casos estamos queriendo decir: Escupe esos bytes en el buffer de stdout
y se desentiende por lo que pase después. No es mi programa el que pone las cosas en la
pantalla, si es que hay una.

7Y por el entero que devuelve el main(), pero no podemos expresar mucho por ahi.

52

1
2
3

NOTAS DE TA130 SEBASTIAN SANTISI

6.8.2. Entrada

Si quisiéramos leer un tnico caracter, por ejemplo ingresado por el usuario, de stdin
podemos utilizar:

int ¢ = getchar();

en la variable ¢ quedard el byte leido. Si no hubiera nada en el buffer de stdin mi programa se
quedara esperando a que hayan datos para leer. Cabe destacar que los datos generalmente se
vuelcan al buffer recién después de que el usuario presione el “enter”, el cual representa uno o
dos caracteres y es lo que nosotros vemos como ’\n’.

También podriamos leer una linea completa, hasta el *\n’ (inclusive):

char s[30];
fgets(s, 30, stdin);

La funcién fgets() intenta leer una linea de stdin. Nosotros le indicamos el tamafo de
memoria que tenemos disponible, en este caso 30, por lo que la funcién sabe que tiene hasta 29
caracteres disponibles, dado que para generar una cadena hay que finalizar con *\0’. Como
lee lineas si el ’\n’ se alcanzan antes de agotar los 29 caracteres la funcién leerd hasta el ’\n’
(y si hubieran mds cosas en el buffer quedaran esperando a una siguiente lectura) y finalizara
la cadena. En cambio si se agotaran los 29 caracteres y no se hubiera leido el ’\n’ la funcién
finalizard la cadena y retornard, es decir, sin haber leido la linea en su totalidad. Mirar si el
altimo caracter de la cadena es un ’\n’ nos permite saber si el tamafio de nuestro arreglo fue
suficiente o la linea lo superé.

6.8.3. Leer cosas que no son cadenas

No se puede, stdin es un stream de caracteres.
Lo que si se puede es leer una cadena y luego procesarla para extraer lo que necesitemos.
Por ejemplo, si necesitdramos leer un entero podrfamos hacer:

char s[20];
fgets(s, 20, stdin);
int n = atoi(s);

La funcidén atoi (), declarada en el encabezado <stdlib.h> recibe una cadena de caracteres
e intenta extraer el valor numérico contenido en la misma. Por ejemplo, si se invocara atoi ("
< 130"); la funcién devolveria el entero 130. La funcién convierte a valor numérico mientras
encuentre en la cadena caracteres vélidos, cuando encuentre un caracter no numérico interrum-
pira el proceso y devolvera lo que tenia hasta ese momento. Por ejemplo, atoi("130hola");
devolveré 130, dado que la *h’ no forma parte de un niimero.

Andloga a la funcién atoi() estd la funcién atof () que sirve para extraer un niimero float
de una cadena.

6.8.4. Agotando la entrada

Vimos que con getchar () podemos leer un byte y que con fgets() podemos leer una linea.
Ahora bien, ;como harfamos si quisiéramos leer todos los bytes o todas las lineas hasta agotar
la entrada?

Tenemos los siguientes cédigos:

int main(void) A{
int c;
while ((c = getchar()) != EQF)

53

N U B W N =

N O G s W N

6.8. ENTRADA'Y SALIDA (1/O) CAPITULO 6. ARREGLOS

putchar (c);
return O;

int main(void) A{
char s[100];
while (fgets (s, 100, stdin) != NULL)
printf ("%s", s);
return O;

Ambos c6digos van a leer la totalidad de lo que haya para leer, en un caso de a un caracter
por vez y en el otro de a lineas (o fracciones de lineas, si alguna de ellas midiera més de 99
caracteres) y hacer un eco de lo leido por stdout.

La funcién getchar () devuelve EOF en caso de falla mientras que fgets() devuelve NULL,
ambas son etiquetas. ;Qué se considera una falla? Que se termine la entrada, EOF literalmente
son las iniciales de end of file, final de archivo. Esta marca se dispara cuando ya no hay nada
para leer.

¢Como hace el usuario para decirle a mi programa que no va a ingresar mas datos? La sefial
de final de archivo se dispara con la combinacién de teclas: Control + D, apretando ambas
teclas a la vez.

Al principio dijimos que los caracteres se codificaban en un byte... ;por qué entonces
getchar () devuelve un int y no un char? Bueno, el valor de EOF no es un char. La funcién
devuelve o caracteres o EOF. Entonces no le alcanza un char para su devolucién. El valor leido
de getchar () nosotros tenemos que almacenarlo en un int, pero una vez que validamos que
ese int no sea EOF entonces sabemos que entra en un char:

char s[100];
size_t 1;

int c;

while(i < 99 && (c = getchar()) != EOF && c != ’\n’)
sli++] = c;

s[i] = ’\0’;

Serfa un algoritmo similar al que implementa internamente fgets().

6.8.5. Redireccién de flujos

Si bien se dijo que generalmente stdin es un flujo que representa lo que ingresa por teclado
y stdout lo que sale por la pantalla, este comportamiento puede cambiarse facilmente a nivel
sistema operativo:

$./programa > archivo.txt

Ejecuta a programa y redirige su salida de stdout al archivo archivo.txt (si no existe lo
crea, si existe lo reemplaza).
Andlogamente:

$./programa < archivo.txt

Ejecuta a programa pasandole el contenido completo del archivo por stdin. Al terminar el
archivo se dispara, obviamente, la marca de fin de archivo.
También se pueden encadenar programas:

54

NOTAS DE TA130 SEBASTIAN SANTISI

$./programal | ./programa2

Ejecuta ambos programas y vuelca el stdout del programal como stdin del programa2.
Esta técnica de redirigir “streams” se conoce como “piping”, literalmente entubado. De ahi el
carécter | toma el nombre de “pipe”.

6.8.6. Salida de error

Como se dijo nuestro programa tiene dos flujos de salida stdout y stderr. El primero
corresponde a la salida normal de nuestro programa, lo que se supone que es parte del
procesamiento que realiza. El segundo se utiliza para informar de errores anormales en el
programa.

Para imprimir por stderr usamos la funcién:

fprintf (stderr, "Error:,%d\n", 10);

que es similar a printf () pero se antepone un parametro adicional que es el flujo de salida en
el que queremos escribir®.

Dos cosas importantisimas sobre stderr:

1. stderr no tiene buffer, por lo que todo lo que imprimamos se va a ver de forma inmediata.
Cuando imprimimos por stdout dado que hay un buffer, si nuestro programa se rompiera en
la linea siguiente tal vez lo dltimo que imprimimos no llega a verse.

2. La salida de stderr no es capturada cuando hacemos redireccién, es decir no importa
que hagamos piping siempre se van a ver los errores por pantalla.

Es por esto que utilizaremos stderr siempre que queramos mostrarle errores al usuario y
también siempre que estemos “poniendo printf ()s” para diagnosticar un programa que falla.

8En realidad es mucho mas que similar... cuando invocamos a printf(...); esta funcién no hace otra cosa que
invocar a fprintf (stdout, ...);.

55

O 00 NI O U B W N -

[e S S S e = T
N O U W N = O

Capitulo 7

Alcance de variables

Hasta ahora hablamos de variables pero no profundizamos en dénde se ubican esas variables
en la memoria ni qué visibilidad tienen.

7.1. Globales y locales

En el lenguaje C hay dos tipos de variables: globales y locales.

Las variables globales son aquellas declaradas fuera de las funciones, mientras que las
locales son las declaradas dentro de las funciones.

Como su nombre lo indica la visibilidad de las variables globales es desde todos lados,
mientras que la visibilidad de las variables locales es sélo dentro de la funcién que las define.

En el siguiente ejemplo:

#include <stdio.h>

char a = ’A’;
)BJ;

char b

void f(char b) {
a =)a);
b = ’X’;

by

int main(void) {
char b = ’b’;
printf ("Y%cyu%ec\n", a, b);
f(b);
printf ("%cyheu%e\n", a, b);

return O;

La salida producida es "A_b\n", "a_b". ;Por qué?
Separemos las variables segtin su pertenencia:

Globales: ay b
Locales amain(): b

Localesaf(): b

56

O 00 NI O Ul B W N

e e T e T
U = W N = O

NOTAS DE TA130 SEBASTIAN SANTISI

Esas 4 variables ocupan lugares diferentes de memoria y son independientes entre si.

Cuando dentro de un cédigo se utiliza un identificador tienen precedencia las variables
locales por sobre las globales. En este ejemplo, en ambas funciones la variable global b es
invisible dado que hay variables locales con el mismo nombre. Toda modificaciéon que se haga
sobre b sera local a esa funcién.

En el primer printf () se imprime la variable a global y la variable b local a main().

Luego se llama a la funcién £ () la cual redefine la variable global a y la variable local b.

En el segundo printf() se imprimen las mismas variables que antes, pero como f()
modificé la variable global a se imprime el nuevo valor.

7.2. La pila de ejecuciéon

Antes que nada recordemos que las variables viven en la memoria y que a la memoria se
accede a través de posiciones de memoria. Nosotros en nuestra aplicacién identificamos a las
variables por un identificador y es el compilador el que traduce ese nombre en una direccién
de memoria.

Las variables globales viven en una zona especifica de la memoria de mi programa. Existen
durante toda la ejecucion y estdn siempre en la misma posicién. Es decir, en nuestro ejemplo
anterior, el compilador sabe la ubicacién de las variables globales a y b y si tuviera que referir a
ellas en algtin lugar reemplazaria su nombre por su posicion.

En cambio las variables locales solamente existen mientras la funcién a la que pertenecen
estd en ejecucion. Por ejemplo, las variables locales de £ () existen s6lo cuando alguien llama
a esa funcion, al igual que las de printf (). Luego de ejecutarse las funciones esta memoria
queda disponible para reutilizarse.

La memoria de las variables locales vive en una zona que se denomina stack o pila. En
matemadticas una pila es una estructura donde cada vez que agrego un elemento lo hago encima
de los ya existentes, como si se tratara de una pila de platos en una alacena. En nuestro caso lo
que se apila es el marco de memoria de cada una de las funciones. Se llama stack frame, marco,
al espacio que ocupan las variables locales de determinada funcién.

Si tuviéramos el siguiente codigo:

void £() {
int a = -3;
+
void g() {
int a = -2;
£0O
t
int main () {
int a = -1;
£0O;
g

return O;

Cuando el programa se inicia se ejecuta la funcién main (). La pila estaba vacia, pero se apila
sobre ella el marco de la funcién main(). En dicho marco de memoria hay un par de valores
que ahora no importan y estd la memoria de la variable a.

Ahora bien, a diferencia de lo que dijimos con las globales, en el caso de las variables locales
el compilador no conoce su posicion. La manera en la que identifica a las variables locales es

57

7.2. LA PILA DE EJECUCION CAPITULO 7. ALCANCE DE VARIABLES

o4O

jo3

lozo

o7 o B G ;
.)M:-'Ifa ' patn \)

AL M 0

Walela) e

Figura 7.1: Aproximacion inicial al esquema de la pila. Izq. La pila al comienzo de la ejecucion.
Der. La pila al llamar a £ ().

por su posicién relativa dentro del marco. Es decir, el compilador conoce dénde empieza el
marco de main() y sabe en qué posiciéon dentro de ese marco estdn las variables locales de esa
funcién.

Supongamos que la variable a se encuentra a 16 bytes del inicio del marco de ejecucién y
supongamos que la pila empieza en la posicién 1000 (y si bien la memoria solemos expresarla
en hexadecimal vamos a utilizar decimal para facilitar la lectura). Como la variable a es entera
ocupara 4 bytes, por lo que el marco de main() mide 20 bytes (figura 7.1.izq).

Si el marco arrancé en la posiciéon 1000 y la variable a esta a 16 de distancia, la variable a
estd efectivamente en la posicién 1016.

Cuando se llama a la funcién f() se apila sobre el marco de main() el marco de £ ()
(figura 7.1.der).

Dado que £ () contiene las mismas variables que main() (y que g()) su marco de ejecucién
tendrd la misma disposicién.

Ahora bien, el marco de f () estd encima del marco de main(), por lo que empieza en la
posicién 1020. Por lo tanto la variable a de £ () estard en la posicién 1036.

Cuando termina la ejecucién de la funcién £ (), ;cémo hace el programa para retomar no
s6lo la memoria de main() si no también el bloque de c6digo maquina que estaba ejecutando
antes de ir a £()? Acé hay algo importante, la funcion f () puede haber sido llamada desde
cualquier lugar, en nuestro caso, estamos siguiendo el c6digo y sabemos que fue llamada desde
el main() pero podria haber sido llamada desde g() (como de hecho pasa mas adelante en el
c6digo). ¢Cémo resuelve eso mi programa?

Lleg6 el momento de explicar para qué reservamos 16 bytes en el marco de las funciones.
En nuestra plataforma las direcciones de memoria ocupan 8 bytes. Reservamos memoria para
guardar dos direcciones de memoria (con significados totalmente diferentes) en el stack.

Volvamos un poco atras en el tiempo, a antes de que main() llamara a la funcién £ (). Se
estd ejecutando la funcién main (), el compilador tiene en la memoria del procesador un registro
que le dice donde empieza el marco de main(). Este registro se llama stack pointer, puntero de
la pila, SP. Ademads tiene otro registro que se llama program counter, contador de programa, PC
que le dice en qué posiciéon de la memoria est4 la instruccion de cédigo méquina que se esta
ejecutando en ese mismo instante. Al momento de llamar a f () el compilador guarda en el
marco de memoria de £ () el valor del SP (que dijimos que valia 1000) y del PC (que podriamos
decir que vale 12, el ntimero de la linea que se estaba ejecutando!), antes de actualizarlos: Al
SP le suma 20 y el PC se reemplaza por donde sea que esta el cédigo maquina de £() en la

En la vida real va a ser la posicién de memoria en la cual estd la instruccién de assembly que se esté ejecutando,
pero queremos que el ejemplo sea seguible.

58

NOTAS DE TA130 SEBASTIAN SANTISI

oto|
. eETE LA
| :ZZ: 12, | pc | U

|'D'2~:_‘: - 51{7

- A A (3] | 0oo

lo e o -4 P

- s | oo ~ |¥ A
i - e

'LDGC‘ . lDﬂo u“45‘?

1060 | 4P 5?

[z ¥ L lec

Figura 7.2: Esquema mas detallado de la pila y los registros. Izq. La pila justo antes de llamar a
£(). Der. La pila al llamar a £ ().

memoria (y, siguiendo nuestra simplificacién, diremos que es 1, porque se ejecuta la linea 1 del
codigo fuente). En la figura 7.2.izq se ve cdmo era el marco de ejecucién en main() al ejecutar la
linea 12 justo antes de llmar a f () mientras que en la figura 7.2.der se ve el instante posterior ya
dentro de £ (), habiendo salvado en la pila de £ () los valores de reposicién de SP y PC previos
a la llamada.

Entonces £ () se ejecuta sabiendo que el marco empieza en lo que indica el SP que es 1020.

Cuando f () termina su ejecucion tiene que retornar el control a la funcién invocante. Sabe
que al comienzo de su marco estdn los valores viejos del SP y del PC y los utiliza para restaurar
ambos contadores. Eso devuelve el marco al marco de main() y la ejecucién adonde se habia
quedado. La memoria de f () sigue estando en el stack, pero ya no le pertenece a £ (), decimos
que se destruyo.

Luego main() contintia su ejecucién y llama a g(). Ya sabemos qué hace, apila el SP y el PC
en el marco de g() e incrementa el SP en 20 y cambia el PC adonde esté el cédigo de g(O.

La funcién g() ahora tiene su variable local a en la misma posicién en la que antes estuvo
la variable local a de la funcién f (), dado que el SP estd en 20 y la distancia era de 16, en la
posicién 36 se encuentra a.

La funcién g() llama a la funcién £ (). Guarda en el marco de £ () su SP, que vale 1020, y su
PC, que vale 7. Incrementa SP en 20, que era el tamafio de su propio marco, y reemplaza el PC
por donde esté el codigo de £ (), es decir 1. El esquema de la memoria al llamar a £ () desde
g() se puede ver en la figura 7.3.

Ahora se ejecuta £ (), pero notar que la variable a de £ () estd en una nueva posiciéon de
memoria. Sigue estando a 16 bytes del inicio del stack frame de £ () pero ahora el SP vale 1040,
por lo que a esta en la posicion 1056. La posicién de a va a depender del historial de llamadas
que haya apilados en el stack y del tamafno del marco de cada una de ellas. El compilador
la encuentra relativa a lo que le diga el SP, pero el SP es una variable méas del problema. En
nuestras tres funciones la variable a estd siempre en SP + 16, y sin embargo es una posicién
diferente para cada funcién e incluso para cada llamada a ellas.

Este mecanismo permite que las funciones se llamen libremente, en cualquier orden, que
s6lo se ocupe memoria para las funciones que estdn en ejecucién en un determinado momento,
e incluso permite que la misma funcién pueda ser llamada més de una vez dado que cada

59

7.3. PARADIGMA PROCEDURAL CAPITULO 7. ALCANCE DE VARIABLES

log
i -3 !’3,\

oS —=""p< | £0)

‘q_
‘ﬁe"—’—_———_——— ‘)
lp2o ¢
lot©
s A
lo3¢ L
lozZ@ 13 %()
lOOo S
I.'D'La ’
-4 2\

‘ L=t
O(fa / PC m_‘iol;)
| 00®

|coc ——Z-q“)
Oo

| to4o]S¥
| L 1rc

Figura 7.3: Estado de la pila al llamar a £ () desde g().

invocacién tendrd su propio marco de memoria independiente del marco de las otras llamadas.
Por el contrario, las variables globales estdn en una posicion fija conocida por todos de forma
absoluta.

Como siempre, esto que se conto en estos parrafos es una simplificacién del problema para
explicar el mecanismo y el concepto. La implementacién real de esto tiene muchos mds detalles
y complejidades?.

7.3. Paradigma procedural

El paradigma de programacion procedural (o procedimental) propone que estructuremos
nuestro c6digo en funciones.

Las funciones son cajas negras que resuelven subproblemas de mi problema original y la
comunicacién de las funciones con sus funciones invocantes es a través de los pardmetros de la
funcién y el retorno de la misma. Es decir, si quiero invocar a una funcién f () le tendré que
pasar pardmetros con la entrada que necesita dicha funcién y la funcién me devolvera con un
return el resultado de su ejecucion.

Los pardmetros de entrada y valores de retorno de la llamada a la funcién tienen que ser
explicitos.

Esto quiere decir que el ejemplo que vimos cuando hablamos de variables globales donde
imprimiamos unas variables, llamdbamos a una funcién void, reimprimfamos las mismas
variables y el resultado era diferente es inaceptable.

2Que hayamos simplificado no significa que esta explicacién haya sido facil, no te sientas idiota si te llevé mas de
una iteracién entenderla.

60

NOTAS DE TA130 SEBASTIAN SANTISI

En este curso (y en general en cualquier ambiente de programacién) ESTA TOTALMENTE
PROHIBIDO el uso de variables globales, a menos que las mismas sean de tipo const.

Se acepta definir de forma global informacién que diferentes funciones puedan leer, pero no
se acepta que las funciones modifiquen el estado global de la aplicacién.

61

= W N -

Capitulo 8

Punteros

8.1. Introducciéon

Hasta el momento vimos que en el lenguaje C hay una jerarquia donde el main() dispara
llamadas a funciones que a su vez llaman a funciones, y también vimos que las funciones
reciben como pardmetros expresiones del lenguaje, donde las mismas se evaltian y ese resultado
se utiliza para inicializar a las variables que son pardmetro de las funciones. La memoria
no sobrevive a las funciones y las funciones pueden devolver un tnico valor, por lo que
practicamente hay un flujo de informacién unidireccional desde el alto nivel hacia el bajo nivel.

Hay veces que esto no alcanza, hay veces que esto no es eficiente, hay veces en la que la
memoria tiene que poder persistir a una funcién... y hay veces donde pasan otras cosas y hace
falta un mecanismo diferente de acceso a la memoria que los que ya vimos.

Un puntero es una variable que puede almacenar una posicién de memoria.

Si se entendi6 el pérrafo anterior entonces podemos terminar el apunte aca.

(Por qué es que el apunte sigue entonces?, porque partiendo de esa idea sencilla de
almacenar una posicién de memoria se abren un montén de posibilidades y complejidades que
vamos a explorar el resto del curso.

int x = 5;

int *p;

p = &x;

printf ("%d\n", *p);

El cédigo anterior imprime "5\n". La variable p es de tipo int *, puntero a entero, un
tipo de variable que puede almacenar la direccién de memoria de una variable de tipo entero.
Obviamente no guardamos posiciones de memoria porque somos acumuladores compulsivos
sino que la idea de guardar una direccion es para poder manipular esa direccién después.

La instruccion &i devuelve la posicién de memoria de la variable x. Dado que i es entera y
la variable p almacena posiciones de variables enteras la asignacioén es correcta.

Ahora tenemos a p que almacend la direcciéon de memoria de x. La instruccién *p le pide al
compilador que vaya a buscar qué hay en la posicién de memora que almacena p. Es decir, esa
expresion evalda al entero que estd guardado en la posicién referenciada por p. Dado que p
referencia a i ese entero serd el entero almacenado en x, un 5. En la figura 8.1 se ve un esquema
de la memoria suponiendo que la variable x vive en la direccién de memoria 0xA8.

Fuera de broma este ejemplo introdujo el 100 % del comportamiento de los punteros. No
hay nada mas alla de esto.

(Por qué seguimos entonces?, porque estos dos operadores y este tipo de variables son los
bloques para construir un montén de cosas.

62

NOTAS DE TA130 SEBASTIAN SANTISI

@ x AB
' X
o xAB ©
OxAS | P
@xA®

Figura 8.1: Representacién de memoria de int x; int *p = &x;.

Figura 8.2: Esquematizacion con “flechas que apuntan” del ejemplo de la figura 8.1.

8.2. Nomenclatura

<T> *p;: p es un puntero a <T>, siendo <T> cualquier tipo. Esto quiere decir que p puede
guardar direcciones de memoria de variables de tipo <T>.

&x: La direccién de x, operador de direccién, referencia la variable. Este operador s6lo puede
utilizarse sobre variables, porque son las tinicas que tienen una direccién de memoria.
Six € <T> = &x € <T> *. Por ejemplo, si x fuera de tipo float, entonces &x por ser la
direccién de un float serd de tipo float *.

p = &x: p apunta a x, obviamente el tipo de p tiene que ser tal que el tipo de &x sea el mismo.

p: El valor apuntado por p, operador de indireccién, desreferencia la variable. Sip € <T> =
*p € <T>. Por ejemplo, si p fuera un puntero a float entonces *p serd un float.

Esta misma nomenclatura se utiliza en la representacién pictérica de los punteros. Interna-
mente la accién de apuntar es guardar una posicién de memoria como se mostré en la figura 8.1,
ahora bien, por simplicidad, para no tener que inventar direcciones de memoria ficticias po-
demos representar la accién de apuntar como en la figura 8.2. Ambas figuras representan lo
mismo, pero es mas sencillo representar el almacenamiento de una direccién de memoria como
una flecha a lo referenciado. De esta representacion viene el concepto de “apuntar”.

8.3. Devolver valores mediante punteros

Antes de complejizar mas el tema, presentemos un uso practico de punteros relacionado.
Como sabemos una funcién puede hacer return de un tinico valor.

(Se puede en C devolver mas de una cosa en una funcién? Utilizado return no. Ahora
bien, podemos hacer que una funcién devuelva multiples cosas y de forma explicita como nos
impone el paradigma procedural.

Antes de ir a punteros presentemos un ejemplo sencillo de una funcién que devuelve un
valor con return que llamaremos “devolucién por el nombre”:

63

O 0 NI O Ul B W N

_
o

O 0 N O U o W -

[y
o

8.3. DEVOLVER VALORES MEDIANTE PUNTEROS CAPITULO 8. PUNTEROS

S n
£0
) n
tmala (.)

Figura 8.3: Esquema de la memoria del ejemplo al invocar a la funcién £ (.

int £ {
return 5;

int main() {
int n;
n = fQ0;
printf ("%d\n", n);
return O;

}

A estas alturas no necesita mayores exposiciones.

Imaginemos que ahora necesitamos que esta funcién devuelva més de una cosa y que la
otra cosa es suficientemente importante como para merecerse el return. ;Cémo podemos hacer
para devolver nuestro 5 sin return?

El siguiente ejemplo es la reversion de este cédigo sin return, utilizando punteros, que
llamaremos “devolucién por la interfaz”:

void f(int =*n) {

*n = b5;
+
int main() {
int n;
f (&n) ;

printf ("%d\n", n);
return O;

b

Puede observarse el esquema de la memoria en la figura 8.3.

Antes de decir otra cosa lo importante es ambos ejemplos implementan la misma funcién.
£ () en ambos casos es una funcién que tiene que devolver un valor entero. En un caso devuelve
su valor entero por el nombre, en el otro devuelve su valor entero por la interfaz. No son dos
funciones diferentes que hacen cosas distintas.

Dicho esto, entonces deberia ser inmediato que el main() tiene que ser idéntico en ambos
casos tanto en como va a declarar la variable receptora del resultado de invocar a £ () como su
manipulacién posterior. Lo tinico que va a ser diferente es como realizar la llamada.

En el primer cason = £();, enel segundo f (&n). En un caso se guarda en n lo que devuelve
£(), en el otro se le pasa a £ () la posicién de memoria en la que queremos que f () guarde
el resultado, que no es otra cosa que la direccién de memoria de n. En la devolucién por la
interfaz delegamos la asignacién a la funcién.

64

O 0 N O Ul s W~

[y
(e

O 00 NI O U B W N

[y
[e]

NOTAS DE TA130 SEBASTIAN SANTISI

El pardmetro n de la versién con punteros es un parametro de salida, es decir, la funcién
no va a leer de ese pardmetro ningtin dato relevante para su operatoria, es simplemente la
referencia de dénde guardar el resultado de su cémputo.

Es importante notar que si una funcién quiere devolver un int entonces la firma de la
funcién necesita recibir un int * porque lo que necesita es que le pasen la posicién de memoria
de un entero en el que va a guardar. ;Por qué?, porque si no no podria resoverse el problema.
Mirar el siguiente ejemplo:

void f(int n) {

n = 5;

+

int main() {
int n;
f(n);

printf ("%d\n", n);
return O;

(Estamos de acuerdo en que va a imprimir basura? Si no entendés por qué, volvé a leer el
capitulo anterior sobre alcance de variables.
Retomando, para la devolucién por la interfaz necesito un nivel adicional de punteros.

8.4. Punteros al inicio de un arreglo

Supongamos que tenemos un arreglo

int valores[] = {10, 20, 30, 407};

cada uno de sus elementos es un int por lo que podriamos querer apuntar un puntero a alguno
de sus elementos.
Apuntemos un puntero a su primer elemento:

int *p = valores;

¢No falta un & por ahi? No.

El nombre de un arreglo es un puntero a su primer elemento. En cédigo: valores ==
— valores[0]

¢(Esto de que el nombre de un arreglo es un puntero a su primer elemento vale para cuando
lo asignamos a un puntero? No, vale siempre. En cualquier expresién donde aparezca el nombre
de un arreglo siempre eso va a evaluar como un puntero al primer elemento.

Recordemos el capitulo “El problema del sizeof de los arreglos” (y si no te acordds, releelo
ahora, es relevante) ahi habiamos presentado el siguiente cédigo:

#include <stdio.h>
void f(int valores([]) {

printf ("%p\n", valores);
printf ("%zd\n", sizeof (valores));

int main(void) {
int valores[] = {1, 2, 3, 4, 5};

65

11
12
13
14
15
16
17

8.5. ARITMETICA DE PUNTEROS CAPITULO 8. PUNTEROS

Figura 8.4: Esquema de la pila de memoria en la llamada a £ ().

printf ("%p\n", valores);
printf (" %zd\n", sizeof (valores));

f(valores);

return O;

b

y habiamos hablado de la extrafieza de que adentro de la funcién el sizeof valia un inexplicable
8.

Miremos en detalle la llamada a la funcién f (valores)... estamos invocando la funcién con
el nombre del arreglo, es decir, estamos pasando un puntero al primer elemento (figura 8.4). La
realidad es que la variable valores de la funcién £ () no es de “tipo arreglo” no es otra cosa
que un int *, en prototipos de funciones int v[] es lo mismo que int *v.

Notar también el detalle de printf (" %p\n", valores);, el modificador " %p" que servia
para imprimir posiciones de memoria (la p es de puntero) estd recibiendo como parametro
valores, es decir, la posicién de memoria del primer elemento.

Es mas, en C no hay manera ni de evaluar ni de asignar un arreglo a ninguna cosa, cada vez
que hacemos una operacién con arreglos estamos operando con un puntero al primer elemento.

8.5. Aritmética de punteros

Supongamos el siguiente ejemplo:

int valores[] = {10, 20, 30, 40};
int *p = valores;

al igual que antes, p apunta al primer elemento de valores. Por lo tanto *p == 10.

Ahora bien, la expresién p + 1 estd sumando el contenido de p, que es una direccién de
memoria, con un ntmero. Si p valiera por ejemplo 42, ;cuanto valdrd p + 1? Bueno, valdra
46. ;Qué?, si, 46, las operaciones de punteros se hacen en funcién del sizeof del tipo base
apuntado. Como p es un int * se adiciona en unidades de sizeof (int), por lo tanto de entero
en entero, o de 4 en 4 bytes.

Entonces si p apunta al primer elemento de valores, p + 1 apunta al segundo elemento de
valores. *(p + 1)== 20.

66

= W N =

NOTAS DE TA130 SEBASTIAN SANTISI

VTV TNV erer 3

Valzres \'l@ ;29 !1@ (ta &

¥

Figura 8.5: Esquema del puntero int *p = valores + 3;.

¢Se acuerdan del operador [] en C? No existe. Bueno, si, existe, pero es lo que se denomina
“aztcar sintactica”. En programacion se le dice aziicar sintictica a expresiones que existen
sélo para hacernos mads facil escribir algo mas complejo, pero en realidad el compilador
reemplaza por lo que realmente quiere decir. Ya vimos un ejemplo de aztcar sintactica en el
capitulo anterior: Cuando declaramos una funcién void f(int v[]); para el compilador es
transparente que estamos queriendo decir void f(int *v) ;, esa azticar nos permite manipular
vectores de forma totalmente inocente sin necesidad de conocer los detalles de punteros que
hay detrds. Lo mismo vale para el operador [].

La expresion p[i] es aztcar sintactica para *(p + i). Si el compilador ve la primera la
reemplaza por la segunda. Es decir, el acceso a indices de vectores no es otra cosa que hacer
operaciones de aritmética de punteros!.

Como pli] eslo mismo que *(p + 1) y como la primera es mucho mas fécil de entender
(prueba: la entendiste sin saber nada de punteros) vamos a preferir la primera.

Entonces, volviendo a nuestro ejemplo, dado que p apunta a valores, p[1] es lo mismo que
decir valores[1], y en ambos casos el compilador est4d haciendo operaciones de punteros.

Entonces, aritmética de punteros: p + i, donde p es una expresion de tipo puntero e i es
una expresion size_t incrementa p en i unidades de su tipo base.

También es una operacién vélida la resta de punteros p - g siempre y cuando p y g apunten
al mismo bloque de memoria. El resultado es un size_t con la cantidad de unidades del tipo
base que haya entre ambos. Ejemplo:

int valores[] = {10, 20, 30, 40};
int #*p = valores + 3; // p apunta a valores [3]

size_t n = p - valores; // n vale 3

(Ver figura 8.5.)

8.6. La memoria “data”

(Prometemos que es la tdltima vez que decimos esto: Acd es donde vamos a terminar de
explicar lo dltimo que faltaba explicar del hola mundo.)
Comparemos estas dos declaraciones:

char a[] = "hola";
char *p = "hola";

En la primera estamos poniendo en nuestro stack un arreglo char [5] inicializado en
{’h’, ’0’, ’1’, ’a’, ’\0’}. En la segunda lo que tenemos en el stack es un char * que
almacena una direccién de memoria jAdénde?

1Como en realidad ya habiamos presentado en “El problema del sizeof de los arreglos” que se supone que acabés
de releer.

67

8.7. PUNTEROS A vOID CAPITULO 8. PUNTEROS

Cuando se inicia nuestro programa el mismo carga en memoria un bloque que se llama
“data”, que es de solo lectura, y que contiene informacion estatica que va a ser utilizada en
nuestro programa. Los literales que escribimos entre comillas viven en ese 4drea de la memoria.

¢Entonces, si a ocupa 5 bytes y p ocupa 8 bytes es mads eficiente usar a que usar p? No, todo
lo contrario. Es cierto que a ocupa 5 bytes en el stack, pero si el marco de las funciones se crea
cuando las invoco, jcomo se inicializa la variable a cada vez que ejecuto mi funcién? Fécil, la
cadena "hola" se encuentra en el data. Cada vez que se invoca la funcién el mi programa tiene
que copiar esa memoria desde ahi al stack para inicializar mi variable.

En el caso de p también hay una inicializacién: Asignar el puntero que corresponda del data
en p.

(Entonces estd mal la declaracién de a? No, simplemente son cosas diferentes. Ya dijimos
que data era una zona de memoria de sélo lectura?, si nosotros necesitariamos modificar el
contenido de la cadena, necesitamos tenerla en el stack.

Es redundante decirlo, pero en:

int valores[] = {10, 20, 30, 40};

también los 16 bytes de inicializacién de valores viven en data y mi programa tiene que copiar
eso al stack al iniciar mi funcién. Si esos valores fueran constantes, evalua si no te conviene
declarar el vector como una variable global const para garantizar que no se ponga en memoria
mas de una vez.

8.7. Punteros a void

Si las variables de tipo puntero almacenan direcciones de memoria, ;jen qué se diferencian
las direcciones de memoria de un int de las de un £loat? En nada.

Si simplemente necesitamos almacenar una direccién de memoria podemos hacerlo sin
especificar el tipo:

int 1i;
void *p = &i;

p serd un “puntero a void” que estd apuntando a i.

Ahora bien, en un void * tengo limitadas dos operaciones bésicas de punteros: No puedo
hacer *p porque el compilador no puede resolver de qué tipo es esa memoria, y por lo tanto no
puede traducir eso en operaciones del procesador. Y tampoco puedo hacer p + i, porque no
sabe cudl es el sizeof de lo asignado.

Como ya se dijo: Sirven tinicamente para almacenar una direccién. No sirven para manipular
la memoria en esa posicién.

8.7.1. memcpy(), memmove () y memcmp ()

Como ejemplo de la utilidad de void * estdn estas tres funciones de <string.h>.

Imaginemos el siguiente problema: Queremos copiar los elementos de un vector de enteros
en otro vector. Sabemos hacer eso. Ahora bien, queremos copiar los elementos de un vector
de flotantes en otro vector. Sabemos hacerlo también. Y también sabemos implementar una
funcién que copie en otro vectores de un tipo cualquiera.

Ahora bien, en C cada funcién es una funcién diferente. Pongamos de ejemplo:

void copiar_vint (int destino[], comnst int origen[], size_t n) {
for(size t 1 = 0; 1 < n; 1i++)

2Si no lo fuera, ;quién me garantizarfa que después de ejecutar mi programa un rato en ese lugar siguiera diciendo
hola?

68

N T B W N =

NOTAS DE TA130 SEBASTIAN SANTISI

destino[i] = origen[i];

Esta funcién no es una funcién genérica, recibe dos punteros a entero y al realizar la copia
hace destino[i] = origen[i], una operacion de indireccién, que implemente la copia de una
variable entera en otra variable entera segtin las reglas de los enteros. ;Cual seria el resultado
final de la operacion? En el final el vector destino serd una copia idéntica del vector origen,
byte a byte.

Y si al final de cuentas los vectores se habran copiado y serdn idénticos en memoria, jera
relevante saber que la memoria contenia enteros o tengo algtin mecanismo para copiar los bytes
que la componen y ya?

Esta es una aplicacién para void *, en vez de plantear una funcién que copie enteros,
flotantes u otro tipo puedo pensar a la memoria como bytes. Pensemos ahora el siguiente
ejemplo:

void copiar(void *destino, const void *origen, size_t n) {

char *d = destino;

char *o = origen;

for(size t 1 = 0; 1 < n; 1i++)
dli] = olil;

Esta funcién copia bytes, es cierto, lo hace con instrucciones de char, pero dado que la
asignacién dentro del mismo tipo no realiza ninguna conversién, preserva el contenido de
los bytes representen lo que sea que representen. Es importante notar que en este caso n
< no representa la cantidad de elementos de los vectores sino la cantidad de bytes. Por
ejemplo, si quisiéramos copiar un vector de 5 enteros deberfamos invocar a la funcién con
5 * sizeof (int).

En este caso de la copia estd implicito que no me interesa entender el contenido del vector.
Es decir, el acceso a la memoria de los punteros es sélo a fines de mirar los bytes. La funcién no
puede adivinar de qué tipo es la memoria. Digamos, esta técnica nos resuelve el problema de
copiar memoria pero no nos serviria para, por ejemplo, sumar los elementos de un vector de
tipo desconocido. Eso requiere aplicar reglas de operaciones de procesador que son especificas
de los tipos.

La biblioteca estdndar en el encabezado <string.h> provee las funciones:

void *memcpy(void *destino, const void *origen, size_t n: Exactamente la funcién que
acabamos de implementar. Eso si, tiene un return destino; en la tdltima linea, por eso el
tipo de retorno.

void *memmove(void *destino, const void *origen, size_t n: Idéntica a la anterior... pe-
ro sabe detectar si hay un solapamiento entre ambos punteros. Por ejemplo, si invociramos
memmove (v + 1, v, 10 * sizeof (int)); y aplicdramos el algoritmo que ya implemen-
tamos no hariamos otra cosa que copiar v[0] 10 veces. Queda como ejercicio entender
esto y pensar la solucién. Por lo general vamos a preferir utilizar esta funcién sobre la
anterior, como dijimos, hacen lo mismo.

int memcmp(const void *v1, const void *v2, size_t n);: Compara los bytes de ambos
vectores, devuelve un entero menor que, igual a o mayor que cero dependiendo de si el
primer byte que difiere es respectivamente menor, igual o mayor en v1 que en v2. Es decir,
devuelve 0 sélo si recorre los n bytes y son todos iguales.

69

g = W N =

8.8. EL PUNTERO NULL CAPITULO 8. PUNTEROS

Pl

Figura 8.6: Representacion grafica de un puntero a NULL.

(e

Figura 8.7: Esquema del puntero a puntero del ejemplo.

8.8. El puntero NULL

En muchas aplicaciones es necesario poder tener un centinela que me diga que una variable
de tipo puntero no apunta a ningtin lugar. Para eso el estdndar provee la etiqueta NULL. Ejemplo:

int *p = NULL;

Sé que el puntero p no apunta a ninguna posicién de memoria vélida. Notar que no es
lo mismo que no inicializar p, si no inicializo p dado que p se inicializa en basura tampoco
apuntard a una posicion de memoria vélida... pero no tengo manera de validarlo.

Vamos a utilizar a NULL cuando tengamos que avisarle a una funcién que le pasamos un
puntero no valido o cuando una funcién nos quiera devolver un puntero no vélido y que
nosotros sepamos que no es valido. Por ejemplo, la funcién fgets() devuelve un char *,y ya
vimos que al alcanzar la marca de fin de archivo la misma devuelve NULL.

Gréficamente vamos a representar los punteros a NULL con el simbolo de una puesta a tierra
eléctrica (figura 8.6).

8.9. Punteros a punteros

Como se dijo, una variable de tipo puntero a cosa es capaz de almacenar posiciones de
memoria de cosas. Pero a su vez ella es una variable, por lo que tiene una direcciéon de memoria.

int i, *pi, **ppi;
pi = &i;
ppi = π

xxppi = 5; // Asigno en i

(Ver figura 8.7.)

Siguiendo lo ya dicho, si pi es una variable de tipo int * entonces &pi serd una variable de
tipo int *x.

El tipo int ** es un “puntero a puntero a entero”, es decir, una variable que guarda direcciones
de memoria de tipo puntero a entero. Ahora bien, usualmente, de forma coloquial vamos a
referirnos a él como “doble puntero a entero”.

Esta tdltima nomenclatura no significa nada y se adopta pura y exclusivamente por un tema
de comodidad... ;,comodidad dénde?, comodidad cuando tengamos punteros de orden mayor.
Por ejemplo, una variable de tipo int **x** formalmente serd un “puntero a puntero a puntero

70

NOTAS DE TA130 SEBASTIAN SANTISI
MEBIES

SRvinunAEN

"\ 1 Gr—(i-\-?_) x

™ _
(¢ mTC 1Y)

+ 4

Figura 8.8: Esquema del las operaciones de punteros en una matriz m[4] [3].

a puntero a entero”, ;no seria mucho mas practico llamarla “cuddruple puntero a entero”? Asi lo
haremos. Y si: Van a aparecer punteros de 6rdenes altos mas adelante.

8.10. Matrices

En la seccién 6.4 vimos las matrices de C, las cuales sabemos que se definen como tipo
— matriz[F] [C] y se accede a sus elementos utilizando dos subindices: matriz[i] [j]. Ahora
bien, a la vista de lo visto en este capitulo el operador corchetes no es otra cosa que aztcar
sintactica para un acceso a punteros: * (x (matriz + i)+ j).

Esta ultima expresiéon es confusa, si el operador * aparece dos veces aplicado en una
expresion, jentonces matriz es de tipo int **? La respuesta es no, y la explicacién es confusa
también.

Mas alla de qué hace el lenguaje para justificar esos dos asteriscos, la explicacién de cémo
hace el compilador para acceder a un elemento y qué aritmética realiza la vimos detallada en la
seccién antedicha. Si no te acordés, repasala.

Recordemos que matriz[i] se traducia como “la iésima fila de la matriz” entonces en la
expresion *(matriz + i) matriz tiene que ser un puntero a “filas de matriz”... y efectivamente
eso es. De hecho el nombre de un arreglo es un puntero a su primer elemento matriz == &
— matriz[0] su tipo es puntero a filas.

int matriz[F][C];
int (xp) [C] = matriz;

El tipo de p es “puntero a arreglos de C enteros”, lo cual tiene sentido si habiamos presentado
a las matrices como arreglos de filas, cada uno de sus elementos serd un arreglo de tantos
elementos como columnas.

Ya que estamos, sabiamos que si tenemos una funcién void foo(int v[]); eso es aztcar
sintdctica para void foo(int #*v). Andlogamente, una funcién void foo(int m[F] [C]); es
aztcar sintdctica para void foo(int (*m)[C]) ;. Eso explica lo ya visto en la seccién 6.4.1.

Entonces, si cuando pasamos matrices a funciones los tipos serdan como el tipo de p en
nuestro ejemplo, sabemos que p se puede utilizar para acceder a los elementos de una matriz
con doble indice.

Ahora si entonces si p es puntero a fila, *(p + 1) serd moverse i unidades de sizeof (int
< [€])3 en memoria y desreferenciar (ver figura 8.8). El resultado de eso serd un arreglo de
C enteros, o mejor dicho, un puntero al primer elemento de ese arreglo. Es decir, el operador
asterisco en este caso lo tnico que hace es cambiar el tipo del puntero, no hace ningtin tipo de
acceso a memoria ni desreferencia nada. Las expresiones p + iy *(p + i) evaltian a la misma

3Que es lo mismo que decir C * sizeof (int).

71

8.11. PUNTEROS A FUNCIONES CAPITULO 8. PUNTEROS

direccién de memoria, s6lo que la primera es de tipo int (*) [C] mientras que la segunda de
tipo intx, que es el tipo con el que apuntamos arreglos.

A partir de ahi el segundo indice j es consistente con un puntero a entero.

Esto que se explicé hasta aqui es la operatoria que hace internamente el lenguaje para
permitir el uso del doble indice tratdindose de memoria unidimensional. Todo, todo, todo es
azucar sintdctica para no operar como realmente es que es:

int matriz [F][C];
int *p = &matriz [0][0];
pli * C + j1; // Accedo a matriz[i][j]

Obviamente vamos a abrazar la aztcar sintactica y usar los dobles corchetes.

8.11. Punteros a funciones

Si bien se incluyen dentro del mismo capitulo por un tema de orden, los punteros a funciones
poco tienen que ver con los punteros. Los punteros que vimos hasta ahora pueden almacenar
direcciones de memoria de datos y funcionalmente sirven para acceder a esa memoria y
modificarla. Los punteros a funciones también almacenardn direcciones, pero en este caso no
de datos sino de cédigo y funcionalmente servirdn para hacer llamadas a ese cédigo.

Cuando nuestro c6digo se compila y enlaza, el mismo forma una secuencia de instrucciones
de cédigo méaquina, donde el procesador ejecuta la instruccién que le dice el program counter*
(PC). Al realizar una llamada a una funcién se reemplaza el PC por la posicién en coédigo
donde se encuentra esa subrutina. Esto dependeréa de la arquitectura del procesador, pero no
necesariamente la memoria de datos y la memoria de programa forman parte del mismo bloque
de memoria. Los punteros a funciones almacenan la posicién de funciones.

Mas alla de la introduccién, los punteros a funciones son sencillos de utilizar (aunque
bastante feos de declarar):

int (*conversor) (int) ; // conversor es un puntero a funciones
<~ de firma: int f(int);
conversor = toupper; // int toupper (int) @ ctype.h:

— Convierte un caracter a mayusculas.

putchar (conversor(’a’)); // Imprime ’A°’.

Antes de entrar en sintaxis, funcionalmente el cédigo anterior define un puntero el cual se
hace apuntar a la funcién toupper (), luego, invocar al puntero como si fuera una funcién es
equivalente a llamar a la funcién toupper (). Como conversor es un puntero asi como en el
ejemplo apunta a toupper () podemos hacer que apunte a cualquier otra funcién que tenga la
firma int f(int);, es decir, podemos usar ese puntero para apuntar a funciones diferentes
segun el contexto, utilizando el mismo c6digo. Atentos a la sintaxis: Cuando asignamos el
puntero decimos conversor = toupper; notar que no hay paréntesis, no estamos llamando a
la funcién toupper (), s6lo estamos escribiendo su nombre, eso constituye un puntero a ella.

Como invocar a un puntero a funcién implica llamar a una funcién, el compilador tiene
que saber los pardmetros de la funcién a ser llamada. Es por eso que los punteros a funcion
pueden apuntar a funciones con determinados parametros. Es decir, el tipo del puntero a
funcién estd dado por los parametros que toma y recibe la funcién a ser apuntada. En el
ejemplo estamos declarando int (*conversor) (int);, notar que esta sintaxis es similar al
prototipo de una funcién, s6lo que se encerrd entre paréntesis y con un asterisco el nombre
de la funcién. Si int conversor (int); declara una funcién conversor que toma un entero y

4Ver capitulo 7.2.

72

= W N -

[o I e N I S

X N3 O Ul s W -

NOTAS DE TA130 SEBASTIAN SANTISI

devuelve un entero, int (*conversor) (int); declara un puntero a funcién conversor que
apunta a funciones que toman un entero y devuelven un entero.

(Para qué sirven los punteros a funciones? Su uso principal es desacoplar problemas. Por
ejemplo, quisiera convertir a maytsculas una cadena de caracteres. Para resolver ese problema
tendria que recorrer la cadena de caracteres y luego para cada caracter deberia convertirlo a
maytsculas. Tal vez yo sé cémo convertir a maytsculas pero no sé c6mo recorrer una cadena® o
viceversa. El cédigo del problema es algo asi como:

void convertir_a_mayusculas (char cadenal[]) {
for(size t i1 = 0; cadenali] !'= ’\0’; i++)
cadena[i] = toupper (cadenalil]);

Bien. Ahora, ;c6mo hacemos si queremos convertir a mintsculas? Podemos copiar y pegar
la funcién completa y cambiar la llamada a toupper () por tolower (). ;Y si quisiéramos hacer
otra conversion diferente? A estas alturas del curso sabemos que repetir c6digo nunca suele ser
una solucién correcta. Como deciamos antes, el problema de recorrer y aplicar algo en todos
los elementos de una cadena es un problema diferente del qué aplicar. Si pudiéramos separar
los problemas evitariamos duplicar:

void convertir (char cadenal[], int (*xconversor) (int)) {
for(size_t i = 0; cadenal[i] != ’\07; i++)
cadenal[i] = conversor (cadenalil);

convertir (cadena, toupper); // Convierte a mayusculas
convertir (cadena, tolower); // Convierte a minusculas

Incluso, imaginemos que queremos reemplazar todas las vocales por equis. Podemos hacer:

int censurar vocales(int c) {
if(c == ’a’ || ¢ == e’ || ¢ == i’ || ¢ == 20’ || ¢ == ’u’)
return ’x’;
return c;

convertir (cadena, censurar_vocales);

Como dijimos: Desacoplamos el problema de recorrer la cadena del problema de cémo la
transformamos. La funcién convertir () puede recibir la funcién que queramos que haga la
conversién que nos interese.

8.11.1. gsort()

Si el ejemplo que mencionamos te pareci6 trillado cambiémoslo por un ejemplo més concreto.
;Sabés ordenar los elementos de un vector de forma eficiente? Probablemente no. Ahora bien,
si tuvieras dos elementos, ;podrias decir cudl deberia ir primero en un vector ordenado? Dicho
de otra manera, el problema de ordenar no depende del criterio de ordenamiento, ;no?

Por ejemplo, tenemos un vector de flotantes. Si quisiéramos ordenarlo de forma descendente
para cualquier par de elementos a, b, si a > b entonces a deberia ir antes que b.

SEs un ejemplo, tratd de seguirlo... a estas alturas del curso todos deberfamos saber recorrer cadenas.

73

NN U N -

8.11. PUNTEROS A FUNCIONES CAPITULO 8. PUNTEROS

En la seccién 8.7.1 vimos a la funcién memcmp () que comparaba dos vectores y devolvia
un entero para codificar cual era “menor” al otro. Bueno, lo que devolvia la funcién esa es la
convencién de C siempre que queramos hacer funciones que devuelvan cosas: Se reciben dos
elementos a y b, si a < b se devuelve un nimero menor a cero, si @ = b se devuelve cero y si
a > b se devuelve un niimero positivo. Donde cuando decimos menor o mayor queremos decir
literalmente se ordenan antes o después.

Volviendo a nuestro problema de los flotantes, podriamos definir:

int comparar_descendente (const float *a, const float *b) {
if (xa > *b)
return -1;
if (xa < *b)
return 1;
return O;

Recordar que querfamos ordenar de forma descendente, entonces nuestra relacién de orden es
al revés que lo esperado.

Sin saber ordenar bien podemos definir un criterio para ordenar. ;Y cémo ordenamos? En
<stdlib.h> tenemos definida la funcién void gsort(void *base, size_t nmemb, size_t
> size, int (xcompar) (const void *, const void *));.La funcién recibe el puntero al
comienzo de un arreglo, la cantidad de elementos del arreglo, el tamafio de cada uno de los
elementos del arreglo y finalmente el puntero a la funcién que le dice cémo ordenar. Mientras
gsort() ordene va a invocar a la funcién que le hayamos pasado pasandole el puntero a dos
elementos y es la funcién la que le va a indicar cuél estd antes de cudl.

Para ordenar un vector de flotantes de forma descendente, por ejemplo:

float v[100] = {...}

gsort (v, 100, sizeof (float), comparar_descendente) ;

Ahora bien, la firma de nuestra funcién no es idéntica a la de la funcién que espera
recibir gsort () dado que espera recibir una con punteros a void y nosotros tenemos con
punteros a float. Si lo compilamos y lo ejecutamos vamos a ver que compila... ahora bien,
con una advertencia de compilacién fuerte que nos dice que estamos usando punteros de tipo
incompatible. Podemos resolver eso creando una funcién “wrapper” (envoltorio) que acomode
los parametros:

int comparar_descendente_void(const void *a, const void *b) {
return comparar_descendente(a, b);

y luego llamar a gsort con esta funcién, que es una funcién boba que no hace otra cosa que
llamar a la otra.

8.11.2. typedef

Como ya vimos el uso de punteros a funciones es relativamente sencillo, pero si es confusa
la forma de declaracién de las variables. Imagind cémo se complicaria querer definir un vector
de funciones de comparacién para pasarle a gsort () por ejemplo. Para mejorar esto podemos
hacer uso de typedef:

typedef int (*comparacion_t) (const void *, const void *));

74

NOTAS DE TA130 SEBASTIAN SANTISI

Teniendo esta declaracién puedo reescribir el prototipo de gsort () como void gsort(void
— *base, size_t nmemb, size_t size, comparacion_t compar);, ;mejora?
Quiero un arreglo de funciones de comparacién:

comparacion_t arreglo[2] = {comparar_descendente_void, strcmpl};

¢(Mejora?
Quiero llamar a gsort () sin escribir un wrapper:

gsort (v, 100, sizeof(float), (comparacion_t)comparar_descendente) ;

¢(Mejora? Y si, podria haber casteado en el ejemplo anterior... ;como? Si, mejora.

75

g B~ W N -

N O G W N -

Capitulo 9

Estructuras y tipos enumerativos

Componen este capitulo los temas de estructuras, tipos enumerativos y tablas de btisqueda.
Ahora bien, s6lo vamos a desarrollar el primero de estos, dado que para el segundo hay un
apunte preexistente en la seccién de Material de la padgina web de la materia.

9.1. Estructuras

Hasta ahora vimos que podemos declarar variables sueltas o que podemos armar bloques
de memoria consecutivos de n elementos del mismo tipo. Ahora bien, hay problemas en los
cuales una misma entidad necesita multiples variables de diferente tipo (0 que no tiene sentido
pensar como una secuencia como en el caso de los vectores). Por ejemplo, si quisiera representar
a una persona ella tendrfa un nombre, un apellido, una fecha de nacimiento, un DNI, etc. Y, tal
vez, si tuviera que representar a una persona podria hacerlo con una determinada cantidad de
variables, pero si tuviera que representar a muchas personas ese enfoque seria desordenado.
Para eso el lenguaje provee las estructuras.

La construcciéon

struct persona {
char nombre [30];
int dni;
edad_t edad;

}s

define un nuevo tipo llamado struct persona que contiene dentro tres “miembros” que se
van a comportar como un arreglo de 30 caracteres, un entero y lo que sea que represente el tipo
edad_tl.

Teniendo este tipo podemos declarar y definir:

struct persona personal = {"Juan", 42123435, 20};

1
~

struct persona persona?
.nombre = "Maria",
.dni = 92134245,
.edad = 19,

¥

1Recordar la seccién 3.7.

76

g B~ W N -

NOTAS DE TA130 SEBASTIAN SANTISI

En el primer caso tenemos que enumerar las diferentes inicializaciones de los miembros en
el mismo orden en el que se declararon en la definicién del tipo, mientras que en el otro nos
independizamos.

Una vez creada la variable podemos acceder a los miembros con el operador .:

printf ("Nombre: %s, DNI: %d, Edad:_ %d\n", personal.nombre,
<~ personal.dni, personal.edad);

Similar a los arreglos, el lenguaje C no provee herramientas para manipular una estructura.
Pero cada uno de los miembros se comporta como una variable de un tipo conocido para el
cual C si provee estas herramientas.

9.1.1. typedef

Notar que el tipo de las estructuras se compone de dos palabras: struct méas el nombre de
la estructura. Muchas veces por comodidad se prefiere utilizar un typedef para englobar al
tipo:

typedef struct persona persona_t;

Incluso podria ya declararse la estructura con typedef:

typedef struct {
char nombre [30];
int dni;
edad_t edad;

} persona_t;

Notar que en este caso el nombre del tipo va después de la llave que concluye la estructura,
a diferencia de la definicién vista antes.

9.1.2. Asignacién de estructuras

En el lenguaje C la asignacién de una estructura en otra es azucar sintdctica para una
llamada a memcpy O):

persona_t a = {"Juan", 42123435, 20};

persona_t b = a; // Equivalente a memcpy (&b, &a, sizeof (
— persona_t));

Notar que, a contramano del criterio minimalista de las operaciones de C, una asignacién de
estructuras puede ser tremendamente ineficiente dado que el sizeof de una estructura puede
ser arbitrariamente grande.

Esto toma relevancia sobretodo cuando implementamos funciones:

void imprimir_persona(persona_t persona) {
printf ("Nombre: %s, DNI: %, Edad: %d\n", persona.nombre,
— persona.dni, persona.edad);

by

En esta funcién cada vez que la misma sea invocada se copiard en la pila cada uno de los bytes
de la variable que viva en la funcién invocante.

Es por esto que practicamente siempre pasaremos las estructuras a las funciones a través
de punteros:

77

O 00 NI O Ul B W N

10
11

O 0 NI O U B W N

e - g S Y
B W N =k o

9.1. ESTRUCTURAS CAPITULO 9. ESTRUCTURAS Y TIPOS ENUMERATIVOS

void imprimir_persona(const persona_t *persona) {
printf ("Nombre: %s, DNI:_ %d, Edad: %d\n", (xpersona).nombre,
< (xpersona) .dni, (xpersona).edad);

Notar como pasamos de copiar en el stack algo que incluye un vector de 30 caracteres a
simplemente recibir una direccién de memoria, lo que es justamente el comportamiento que C
tiene para los arreglos.

9.1.3. Punteros a estructuras

Ya vimos que para acceder a un miembro de una estructura tenemos el operador ., y en el
ejemplo anterior vimos que la sintaxis se empasta cuando tenemos punteros a estructuras:

persona_t a;
persona_t *b = &a;

a.dni = 12678145;

(¥b) .dni = 12678145;

\begin{lstlisting}

(Los paréntesis son necesarios por precedencia de operadores.)

Bueno, para simplificar la sintaxis el lenguaje nos provee otra az
— ucar sintactica como la que nos didé para acceder a elementos
— de punteros:

\begin{lstlisting}

b->dni = 12678145;

El operador flecha? a->x no es otra cosa que aztcar sintdctica para (*a)->x.

Para distinguir rdpido cudndo se usa punto y cudnto se usa flecha simplemente hay que
recordar si tenemos una estructura o un puntero a estructura. Si tenemos estructura va punto,
si tenemos puntero a estructura va flecha.

9.1.4. Tamarno de las estructuras (alineacion)

Supongamos el siguiente ejemplo:

typedef struct {
signed char piso;
int numero;

} aula_t;

int main(void) A{
aula_t aula = {2, 202};

printf ("%zd\n", sizeof (aula.piso)); // Imprime 1
printf (" %zd\n", sizeof (aula.numero)); // Imprime 4
printf (" %zd\n", sizeof (aula)); // Imprime 8 !!!

return O;

Lo llamamos asf pero es un guién seguido de un signo de mayor que.

78

NOTAS DE TA130 SEBASTIAN SANTISI

La memoria que contiene a la estructura tiene que tener capacidad al menos para cada uno
de sus miembros, pero no hay garantias de que tenga exactamente ese tamafio.

La explicacién de este comportamiento tiene que ver con detalles de implementacién de
hardware. Sin ahondar de forma superficial podemos decir que los disefiadores de procesadores
alguna vez dijeron, si los enteros miden 4 bytes y la gente va a poner muchos enteros en
memoria... jpor qué no forzamos a que los acomoden en posiciones muiltiplas de 4 de memoria?
Y podremos preguntarnos qué se gana con eso, bueno, si los enteros estdn en posiciones
multiplas de 4, los tltimos dos bits de esa posicién van a ser siempre cero. Y si son siempre
cero podemos ahorrarnos de routear dos vias en todos los buses de datos. Eso es una reduccién
importantisima en la complejidad del procesador, ;por qué no hacerlo?

Ahora bien, la contrapartida de forzar a que la memoria esté en posiciones particulares
(esto se llama “alineacién”) es que el compilador se ve forzado a dejar espacios (que se llaman
“padding”) entre las variables para que todas estén alineadas segtin su tipo.

En nuestro ejemplo, podriamos suponer que entre el piso y el aula hay 3 bytes de padding
para que si la estructura comienza en una posicién multiplo de 4, entonces la variable entera
también lo haga.*

En nuestro curso vamos a asumir que SIEMPRE hay paddings en las estructuras, que es la
postura mds independiente de la plataforma que podemos tomar.

9.1.5. Asignacién (otra vez) y comparacién

Volviendo a las operaciones, ya sabemos que la asignacion de estructuras es aztcar sintactica
para memcpy (), es decir cuando decimos b = a (siendo ambas estructuras) se copia toda la
memoria de a en b, y no hay nada de malo en eso. Una serd una copia idéntica de la otra y
serdn iguales. Pero tenemos que tomar en cuenta que esta operacion copia todo, inclusive el
padding que contiene basura®.

Otra vez: No hay nada de malo con esto. S6lo estamos describiendo el comportamiento. (Y
tal vez si habria algo malo si, por ejemplo, seria maés eficiente copiar la cadena con strcpy ()
para economizar movimiento de memoria.)

Ahora bien, ;qué pasa al hacer?:

if(a == b) {

Anélogamente a la asignacién, la comparacién es en realidad una llamada a memcmp (). Y
ahi sf estd mal. Si comparamos la memoria de a y b byte a byte estaremos comparando no sélo
el nombre, el DNI y la edad, si no ademads toda la basura que viene en la memoria, tanto en el
padding como en lo que haya después del >\0’ de las cadenas.

El operador de comparacién podria decirme que son diferentes dos estructuras que tienen
exactamente lo mismo asignado en sus miembros. La tinica manera de comparar estructuras es
haciéndolo miembro a miembro:

if(a.dni == b.dni && a.edad == b.edad && strcmp(a.nombre, b.nombre
)

3No confundir este 8 con el 8 que habiamos visto en la seccién 6.3, el 8 en este ejemplo es casualidad.

4Y podés preguntarte por qué no acomodar la estructura en memoria de tal manera que la variable entera quede
en una posicion vélida y usar 5 bytes. Bueno, la respuesta tiene que ver con arreglos. Un arreglo es una sucesiéon
de variables consecutivas en memoria, no habria manera de que dos estructuras de 5 bytes que contienen un entero
adentro se puedan poner consecutivas en memoria y que el entero quede alineado.

5Y dicho sea de paso, en nuestros ejemplos teniamos char nombre[30] = "Juan";, también hay 25 bytes de basura
ahi después del *\0’.

79

9.2. TIPOS ENUMERATIVOS CAPITULO 9. ESTRUCTURAS Y TIPOS ENUMERATIVOS

9.2. Tipos enumerativos

Ver el apunte en la web de la materia.

9.3. Tablas de busqueda

Ver el apunte en la web de la materia.

80

Capitulo 10

Manejo de bits

Omitiremos este capitulo dado que ya hay un apunte sobre el tema en la pagina web de la
materia.

81

Capitulo 11

Memoria dinamica

11.1. Introduccion

Hasta el momento hablamos de diferentes lugares de la memoria: El stack, la memoria data,
el lugar donde viven las variables globales. Toda esa memoria forma parte del mismo bloque
de memoria: La memoria que el sistema operativo le asigna de forma estética a cada proceso.
Es decir, cada vez que se arranca una instancia de un programa en una computadora el sistema
operativo le reserva una equis cantidad de memoria para que ahi adentro el programa haga
lo que quiera. Esta cantidad dependerd de la configuracién, pero es un tamafio de no més de
un par de megabytes. Ahora bien, si bien esta suma de memoria puede sobrar para algunas
aplicaciones, para muchas serd insuficiente.

Por fuera de esta limitacién el modelo de memoria de stack que estamos viendo tiene una
limitacién importante en el &mbito de vida de la memoria. Las funciones de mds alto nivel
pueden compartirle su memoria a las de mas bajo nivel, a través de punteros, pero lo contrario
no funciona. Dado que la memoria donde viven las funciones es voldtil, si una funcién de bajo
nivel devolviera un puntero ese puntero pasaria a ser invalido en el mismo momento en el que
la funcién termina, dado que el stack se desocupa. Esto plantea un tema de disefio, donde si se
requiere que una funcién de bajo nivel manipule memoria es la funcién invocante la que tiene
que prever reservar esa memoria previamente, con lo cual se invirten las responsabilidades,
porque para conocer el tamafio de esa memoria hay que conocer el problema a resolver lo cual
viola la abstraccién de delegar en funciones.

Estos dos parrafos plantean tres problemas donde el esquema de memoria visto es insufi-
ciente:

= Cuando el problema es grande.

= Cuando no puedo prever el tamafio del problema (y no puedo apostar a un niamero
grande por el item anterior).

= Cuando requiero que una funcién devuelva memoria que le sobreviva.

11.2. El heap

Como se dijo, cuando el sistema operativo crea un proceso le asigna una porcién de memoria
de tamafio fijo que es lo que denominamos el stack. Por disefio el stack tiene que tener un
tamafio pequefio dado que cada proceso utiliza esa memoria y puede haber indefinidos procesos.
Ahora bien, hablamos de que el stack de cada aplicacién suele ocupar un par de megabytes,
pero una computadora tiene memoria que se contabiliza en gigabytes. La memoria que no

82

T = W N =

NOTAS DE TA130 SEBASTIAN SANTISI

constituye el stack se denomina “heap”!, y podemos utilizarla gestiondndola con el sistema
operativo.

A diferencia del stack que es fijo, equitativo para todos los procesos y estd garantizado® en
el heap podemos pedir la cantidad de memoria que queramos, cada proceso gestiona la propia
(si la necesita) y no hay ninguna garantia de que esa memoria esté disponible.

El protocolo para la administraciéon de la memoria es sencillo: Se le pide al sistema operativo
una determinada cantidad de bytes de memoria. Si el sistema operativo los tiene, reserva
esa memoria para nuestro proceso y nos entrega un puntero al primer byte de ese bloque
de memoria. Cuando nosotros no necesitemos més la memoria, tenemos que devolvérsela al
sistema operativo. Una vez devuelta la memoria la misma ya no nos pertenece.

En este curso insistiremos particularmente en dos cosas: Todo pedido de memoria puede
fallar y toda la memoria que se pida debe ser devuelta.

Cabe preguntarse qué pasa con la memoria de heap que pidié un proceso cuando el mismo
termina. En un sistema operativo moderno el mismo deberia liberar por si solo todos los recursos
asociados a ese proceso. Ahora bien, para nuestra filosofia, no nos importa qué haga el sistema
operativo después. Si un recurso lo reservamos explicitamente, ese mismo recurso lo vamos a
liberar explicitamente. Ademads, estamos en un curso para alumnos de Ingenieria Electrénica, las
aplicaciones que hacemos los electrénicos generalmente nunca terminan mientras el dispositivo
esté energizado.

11.3. malloc() y free()

Como ya se dijo los pedidos de la memoria se hacen por una determinada cantidad de
bytes. Ahora bien nosotros pedimos memoria de forma utilitaria porque necesitamos almacenar
valores de determinado tipo. Tiene sentido entonces que ese pedido lo pensemos como unidades
de determinado tipo, y ademas, la referenciemos con punteros consistentes.

El siguiente cédigo:

#include <stdio.h>
int *v = malloc (20 * sizeof (int));

free(v);

pide la memoria suficiente como para un bloque de 20 enteros en memoria, la funcién malloc ()
hace ese pedido. Como se trata de enteros los vamos a referenciar con el puntero v que es
a enteros. Luego del pedido de memoria podremos manipular este bloque como si fuera un
arreglo de 20 elementos enteros... que de hecho lo es, la tinica diferencia es que vive en el heap
en vez del stack, cosa que es indistinguible para nosotros. Finalmente cuando no necesitemos
mads esa memoria tendremos que liberar los recursos con free().
Como regla mnemotécnica, un pedido de memoria siempre se ve tipo *p = malloc(n *

— sizeof (tipo)) ;. Tiene sentido, si quiero pedir memoria para elementos de tamafio tipo
y la funcién me va a devolver un puntero a uno de ellos necesito apuntarlo con un tipo *.
Dependiendo del problema n tal vez valga 1 y se omita. Y dependiendo del problema, si justo
estuviera pidiendo memoria para char podriamos omitir el sizeof (tipo) dado que es el tnico
caso en el que estd garantizado que valga 1. Por lo general, para hacer mas uniformes los

1Y no tenemos una buena traduccién al castellano, asf que utilizaremos la palabra en inglés. Literalmente heap es
montoén, o monticulo.

2Si el sistema operativo se quedara sin espacio para el stack, directamente no podrfa lanzar el proceso, asi que si hay
proceso es porque habia espacio para su stack.

83

B W N -

O 0 NI O Ul B W N

O 0 N O U B W N -

—_
o

11.3. MALLOC() Y FREE() CAPITULO 11. MEMORIA DINAMICA

pedidos eligiremos ponerlo®.

En la seccién anterior dijimos que en este curso insistirfamos particularmente con dos
cuestiones. La primera era liberar la memoria, cosa que hicimos, la segunda era que los pedidos
de memoria podian fallar, cosa que no hicimos. La funcién malloc() devuelve un puntero
valido cuando hay memoria disponible y NULL cuando el sistema operativo no puede satisfacer
nuestro pedido. Qué hacer ante una falla de memoria dependerd del problema, pero validarlo y
tomar una decisién es imprescindible.

En el caso anterior deberfamos tener un cédigo de manejo de error:

int *v = malloc (20 * sizeof (int));
if (v == NULL) A

// Error
+

De mas esta decir que si falla el pedido de memoria no hay nada que liberar.
Supongamos una funcién que recibe una cadena de caracteres y devuelve una cadena igual
pero en mayusculas:

char #*cadena_a_mayusculas (const char x*s) {
char *nueva = malloc(strlen(s) + 1);
if (nueva == NULL)
return NULL;

for(size_t i = 0; (nuevalil = toupper (viejalil)); i++);

return nueva;

b

Como se ve, luego de pedir la memoria la misma se valida, si la misma fallara la funcién
completa va a fallar devolviendo NULL, no hay nada que esta funcién podria hacer si no tuviera
la memoria adecuada. Ahora bien, nuestra funcién en cierta medida hereda el comportamiento
de malloc(). Si nuestra funcién hace lo que tiene que hacer devuelve un puntero a un bloque
de memoria del heap y si falla devuelve un puntero invélido. Es decir, el que invoque esta
funcién va a tener que tener las mismas precauciones que si invocara a malloc (). Por ejemplo:

int main(void) {

char *s = cadena_a_mayusculas ("hola");
if (s == NULL)
return 1;

printf ("%s\n", s);

free(s);
return O;

Cuando tengamos funciones que manipulan memoria dindmica vamos a tener que ser
conscientes todo el tiempo de si las mismas pueden fallar y de liberar los recursos.

Volviendo a la funcién free () la misma recibe de parametro un puntero devuelvo previa-
mente por malloc(). No un puntero al bloque, el mismo puntero que devolvié malloc(). La
funcién no libera “el puntero”, entendiendo por eso a la variable, sino la memoria referenciada

3Salvo algunos ejemplos en este mismo capitulo, donde estamos més interesados en explicar la operatoria que en en
hacer c6digo consistente y elegante.

84

T = W N =

N Ul = W DN -

NOTAS DE TA130 SEBASTIAN SANTISI

por ese puntero, la variable vive en el stack. Por mads que ahora empecemos a poner estructuras
cada vez mds complejas en el heap, las variables que las referencien siempre estaran en el stack.

11.4. Pérdidas de memoria

(Qué tienen en comun estos dos bloques?

int *p = malloc (10 * sizeof (int));
p = malloc (20 * sizeof (int));

char *s = malloc(5 * sizeof (char));
s = "hola";

En ambos casos asigno memoria devuelta por malloc() a un puntero y acto seguido piso
el valor del puntero. ;Cudl seria la consecuencia de esto? La memoria quedé en un estado
inaccesible. Es decir, no puedo recuperar el puntero adonde tengo mis bytes pero tampoco
puedo liberarla porque para llamar a free () deberia haber conservado ese puntero.

Cuando pasa eso se dice que hubo una pérdida de memoria, o un memory leak. Y es un
error grave en mi programa, porque si mi programa repetidas veces tuviera pérdidas de
memoria eventualmente podria consumir todos los recursos de la computadora sin manera de
recuperarse.

11.5. Valgrind

A diferencia de otros problemas, identificar memoria no liberada o pérdidas de memoria es
muy dificultuoso dado que, a menos que caigamos en un caso extremo donde agotemos toda la
memoria, es una falla invisible mirando el comportamiento del programa. Para detectar estos
problemas existen herramientas especializadas como Valgrind.

Antes de entrar en Valgrind volvamos a GCC. Cuando nosotros compilamos convertimos
cédigo fuente en c6digo maquina, y eso es lo que contiene el ejecutable. Ahora bien, si queremos
depurar nuestro ejecutable de poco nos sirve saber en qué instruccién de c6digo maquina hay
una falla. Querriamos saber a qué instruccién de cédigo fuente se corresponde cada una de las
instrucciones de cédigo maquina. Cuando compilamos podemos habilitar que el compilador
incluya informacién de debugging en nuestro ejecutable, que es basicamente esto, incluir la
relacién entre fuente y compilacién. Para ello en GCC podemos agregar el pardmetro -g en la
linea de compilacién.

Supongamos el siguiente cédigo:

codigo.c

#include <stdlib.h>

int main(void) {
char *v = malloc (10);
return O;

Si compilamos y ejecutamos:
$ gcc -g codigo.c -o codigo

$./codigo
$

85

11.5. VALGRIND CAPITULO 11. MEMORIA DINAMICA

efectivamente no veremos ningun error, el programa funciona correctamente. Sin embargo
nosotros sabemos que olvidamos liberar la memoria pedida.
Si ejecutamos nuestro programa a través de Valgrind en cambio obtendremos:

$ valgrind ./codigo

==10746== Memcheck, a memory error detector

==10746== Copyright (C) 2002-2017, and GNU GPL’d, by Julian Seward et al.
==10746== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==10746== Command: ./codigo

==10746==

==10746==

==10746== HEAP SUMMARY:

==10746== in use at exit: 10 bytes in 1 blocks
==10746== total heap usage: 1 allocs, O frees, 10 bytes allocated
==10746==

==10746== LEAK SUMMARY:

==10746== definitely lost: 10 bytes in 1 blocks
==10746== indirectly lost: O bytes in O blocks
==10746== possibly lost: O bytes in O blocks
==10746== still reachable: O bytes in O blocks
==10746== suppressed: O bytes in O blocks

==10746== Rerun with --leak-check=full to see details of leaked memory
==10746==

==10746== For counts of detected and suppressed errors, rerun with: -v
==10746== ERROR SUMMARY: O errors from O contexts (suppressed: O from 0)
$

Focalicémosnos en el “heap summary” (resumen del heap) dice “en uso a la salida 10 bytes
en 1 bloque”, ademds me dice que hice un malloc() pero ningiin free (). Més adelante est4 el
resumen de pérdidas, que me dice que perdi de forma definitiva 10 bytes en un bloque.

Casi al final nos da una sugerencia, nos dice que volvamos a correr Valgrind pero esta vez
agregando --leak-check=full. Si lo hiciéramos obtdriamos (la misma salida de antes pero
ademas):

$ valgrind --leak-check=full ./codigo

==10799== 10 bytes in 1 blocks are definitely lost in loss record 1 of 1
==10799== at 0x4C31BOF: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd6

4-linux.so)
==10799== by 0x10865B: main (codigo.c:4)

$

Este nuevo bloque nos dice que el pedido de memoria fue en la funcién main() y mads
especificamente en codigo.c:4, es decir, en la linea 4 del archivo codigo. ct.

Valgrind no nos va a decir dénde deberiamos haber liberado la memoria, eso es una
responsabilidad nuestra como programadores. Lo que Valgrind nos va a inicar es dénde se
pidi6 la memoria que luego no se libero.

Agreguemos el free() en la linea previa al return y corramos de nuevo:

$ valgrind --leak-check=full ./codigo

4Si no hubiéramos compilado con -g veriamos sélo que tenemos un error en 0x10865B, la posicién en el codigo
mdquina: Compila con -g.

86

NGB W N =

O 0 NI O U B W N

NOTAS DE TA130 SEBASTIAN SANTISI

==11032== HEAP SUMMARY:

==11032== in use at exit: O bytes in O blocks
==11032== total heap usage: 1 allocs, 1 frees, 10 bytes allocated
==11032==

==11032== All heap blocks were freed -- no leaks are possible

$

Ademas de que el resumen nos dice que la cantidad de pedidos y liberaciones es la misma,
textualmente nos dice “Todos los bloques del heap fueron liberados — no hay pérdidas posibles”.
Ese es el mensaje que esperamos obtener que marca la validez de nuestro programa.

Més alld de que el uso primario de Valgrind sea para detectar memoria no liberada o perdida,
Valgrind también nos va a avisar cuando utilicemos memoria no inicializada, escribamos en
memoria que no nos pertenece, etc.

11.6. realloc()

Supongamos el problema de leer ntimeros de stdin hasta alcanzar la marca de final de
archivo. Este es un problema en el cual al momento de empezar desconocemos el tamafio final
que vamos a tener. En estos casos lo que hay que hacer es variar el tamarfio de la memoria
conforme avancemos con la solucién.

Supongamos que tenemos una determinada memoria inicial pedida:

char *p = malloc(5);

y que la previsiéon de 5 caracteres se quedo corta y queremos extender la memoria de p a 10.
Siempre podemos hacer:

char *aux = malloc (10) ;
if (aux == NULL)
// Fallé, no hay nada que pueda hacer
memcpy (aux, p, 5);
free(p);
p = aux;

Alguien puede decir “pero eso no redimensiona el tamafio de p, simplemente se cre6 un
nuevo bloque de mayor tamafio y se apunté a p”. Exactamente. Si miro p antes del procedimiento
tenia 5 bytes, después tiene 10, el contenido que estaba en esos 5 bytes esta preservado en el
nuevo bloque. Eso es redimensionar la memoria.

Este algoritmo exacto estd implementado en la funcién realloc(). La funcién realloc()
recibe un puntero a un bloque de memoria dindmica y un nuevo tamario. Se encarga de hacer
el pedido de nueva memoria, rescatar el contenido y liberar el bloque recibido. En caso de no
poder pedir la memoria nueva simplemente devuelve NULL y no modifica el bloque recibido.

Un ejemplo de uso seria:

char *p = malloc(b);

char #*aux = realloc(p, 10);

if (aux == NULL)

// No pude redimensionar
else

p = aux;
free(p);

87

O 0 NI O Ul s WD~

I T T e e T e
S 0O 00 NN ON U W= O

11.7. CASOS DE BORDE CAPITULO 11. MEMORIA DINAMICA

Nunca debe hacerse p = realloc(p, n);, dado que si no se pudiera generar la nueva
memoria la funcién devolveria NULL y perderiamos la referencia a p teniendo una fuga de
memoria. Siempre llamaremos a realloc () utilizando un puntero auxiliar.

Notar que el tamafio que le pasamos a realloc() es el nuevo tamarfio deseado. El mismo
puede ser tanto mayor como menor que el tamafio previo. La funcién realizard el memcpy por el
minimo entre la cantidad de bytes del tamafio viejo y el nuevo.

11.7. Casos de borde

Un par de casos de borde contemplados en el estindar que hacen mads sencilla la implemen-
tacién de algoritmos:

= malloc(0) = NULL.

= free(NULL) = No hace nada.

m realloc(NULL, n) <= malloc(n).
m realloc(p, 0) <= free(p).

Por ejemplo:

/* Lee enteros de stdin hasta agotar la entrada, devuelve el
vector de enteros leidos por el nombre y la cantidad de enteros
a través de n. x/
int *leer_enteros(size_t *n) {

int *v = NULL;

*n = 0;

char buffer [100];

while (fgets(buffer, 100, stdin) != NULL) {
int *aux = realloc(v, (xn + 1) * sizeof (int));
if (aux == NULL) {
free(v);
return NULL;
b
v = aux;
v[(*n)++] = atoi(buffer);

return v;

(¢Es buena idea descartar todo lo leido si no hay memoria? Es un criterio, tal vez no sea el
mejor.)

El cé6digo anterior utiliza dos de los casos de borde que se mencionaron. Te queda de tarea
identificar cuéles y desarrollar cémo deberia haber sido el c6digo en caso de que el estdndar no
especificara que esos casos son seguros.

Sobre el c6digo anterior notar que redimensionamos por cada linea leida, esto fuerza un
llamado a malloc() y a memcpy() por linea leida... donde a medida que se avanza hay que
copiar mas y mds y mds. Profundizaremos mds sobre estos aspectos de eficiencia mds adelante,
pero esta solucién es muy ineficiente. Necesita copiar una cantidad de bytes proporcional al
cuadrado de la cantidad de lineas leidas.

88

g = W N =

NOTAS DE TA130 SEBASTIAN SANTISI

11.8. Matrices dinamicas

Siguiendo con lo ya presentado en la seccién 8.10 si quisiéramos crear una matriz en el
sentido de las matrices estaticas de C podriamos hacer algo como:

float (*matriz) [cols] = malloc(filas * sizeof (float [cols]));

matriz[i][j] = 2.5;

Si hiciéramos esto tendriamos toda la memoria en un bloque monolitico de filas * cols *
— sizeof (float) bytes y cuando accedemos con el doble corchete lo hacemos en el sentido
unidimensional que ya vimos, como un equivalente a * (matriz + i * cols + filas).

Si bien se puede hacer esto, este no es el enfoque preferido cuando utilizamos memoria
dindmica. Con memoria dindmica efectivamente podemos generar un arreglo dindmico de
arreglos dindmicos, donde efectivamente haya una bidimensionalidad.

El enfoque dindmico es (se omiten las validaciones):

float **matriz = malloc(filas * sizeof (floatx*));
for(size t f = 0; f < filas; f++)
matriz[f] = malloc(cols * sizeof (float));

matriz[i][j] = 2.5;

En este caso matriz es un arreglo de punteros a flotantes, cada uno de sus elementos serd un
puntero a flotante. Ahora bien, puntero a flotante es el tipo de los arreglos dindmicos, dado que
puedo acceder a un arreglo a través de un puntero a su primer elemento. Luego cada uno de
los elementos de la matriz, un matriz[i] serd un puntero a flotante y lo inicializaremos con un
vector dindmico.

En este caso notar que los dobles corchetes efectivamente significan lo esperado * (* (matriz
< + 1)+ j), acd no hay magia de la que C hace para resolver las matrices estaticas. Dos
asteriscos significan desreferenciar punteros dos veces.

El enfoque de arreglos dindmicos de arreglos dindmicos consume un poco mds de memoria,
porque ahora se necesita un arreglo de filas punteros, pero es mucho mads flexible al mantener
la memoria segmentada en bloques de no més de cols elementos consecutivos.

89

Capitulo 12

Contratos

12.1. Documentacion

Hasta el momento en la seccién 2.8 introdujimos el concepto de comentarios y su sintaxis
y los hemos utilizado en muchos de los ejemplos que desarrollamos. Ahora bien nunca
formalizamos qué es un comentario y qué es la documentacioén.

Los comentarios son lo que hemos estado utilizando hasta el momento: Explicaciones al
margen del cédigo que ayudan al que estd leyendo el c6digo fuente a entender cémo se esta
haciendo algo o por qué se decidi6 hacerlo de esa manera. El destinatario de esos comentarios
es un programador! que estd queriendo mantener el c6digo desarrollado. Cabe destacar, quien
lee c6digo fuente sabe programar, por lo tanto los comentarios no deben explicar por ejemplo
que int i = 0; declara una variable de tipo entero que se llama i y le asigna el literal 0. Tal
vez (y s6lo tal vez) tenga sentido explicar qué va a representar i en el c6digo. Los comentarios
ayudan a entender cosas que no son obvias o consideraciones que no son evidentes.

Si bien los comentarios constituyen parte de la documentacién del cédigo vamos a jerar-
quizar el concepto de documentacién de otra manera: Explicaciones de qué hace el cédigo,
generalmente funciones o médulos. El destinatario de la documentacién es aquel que quiera
utilizar, por ejemplo, nuestra funcién. Al que quiera utilizar una funcién le interesa saber
de qué forma se utiliza, qué representan los pardmetros, qué devuelve, etc. y probablemente
tenga poco interés en saber como se implementé. Un ejemplo de documentacién es la que
estd asociada a todas las funciones de biblioteca que presentamos hasta el momento. Quien
lee documentacién quiere, por ejemplo, saber cémo invocar a la funcién printf (), o cémo
imprimir un nimero de punto flotante con 5 decimales, pero no tiene el menor interés en saber
cémo es que printf () hace su magia. La documentacién no explica el c6digo fuente, es més,
muchas veces ni siquiera tenemos acceso a él, la documentacién explica como interactuar con
las interfases.

Por mas que muchas veces sea descuidada en un proyecto, la documentacién es parte
importante del mismo. Un buen cédigo puede ser muy expresivo, pero nunca explica por si
solo las decisiones de disefio, los casos particulares analizados, los algoritmos utilizados, etc.

12.2. Autodocumentacion

Si bien documentar es importante, la documentacién empieza por el c6digo en si. Imagine-
mos que tenemos esta funcion:

T

!Notar que no decimos “otro programador”, tranquilamente podemos estar dejando un comentario para nosotros
mismos en el futuro.

90

NOTAS DE TA130 SEBASTIAN SANTISI

void f(int *a, int *b, int c);

La pregunta es, ;qué hace la funcién? Si la funcién tiene una documentacién podemos leerla, y
tal vez después de eso podamos saber para qué servia.
En realidad esta funcién ya la implementamos en la seccién 8.7.1. La firma de la funcién fue

void copiar_vint (int destino[], comnst int origen[], size_t n);

¢{Mejora en algo haber elegido un nombre claro para la funcién, para los parametros, haber
dejado en claro que los primeros parametros en realidad son vectores, que el segundo de ellos
es constante, que el tercer parametro no es cualquier entero si no un tamafio de memoria? La
idea de la autodocumentacion es que si somos claros en la intencién de nuestras funciones
entonces no tenemos una necesidad de leer la documentacién para entender qué hace una
funcion.

(Esto significa que podemos prescindir de la documentacién? No, todavia podemos querer
explicar detalles al respecto de la misma. Lo que esto significa es que si estamos leyendo un
fragmento de cédigo fuente donde se llama a una funcién copiar_vint probablemente no haga
falta ir a la documentacién para saber que esa funcién copia arreglos de enteros. Del mismo
modo que si quisiéramos usar la funcién no tendriamos que preguntarnos cudl de los dos
pardmetros es el destino y perder el tiempo leyendo texto.

Y, dicho sea de paso, la diferencia mas importante entre una funcién y la documentacion es
que la funcién se compila y se ejecuta. Es decir, la funcién copiar_vint es exactamente lo que
estd programado. La documentacién puede contener errores o incluso estar desactualizada si el
proyecto se traté de forma negligente. Escribir cdigo mas claro implica poder documentar de
forma mds compacta y no tener que mantener tanta documentacién.?

La autodocumentacién tiene limitaciones, pero es el comienzo para tener un cédigo legible.

12.3. Contratos

La programacién por contratos es una formalizacién del concepto de documentacién que
intenta separar responsabilidades al respecto de de qué son responsables no sélo el que
implement6 la funcién si no el que va a invocarla. La idea de la préctica de la programacién
por contratos es dejar estipuladas por escrito las reglas de uso y el comportamiento.

El contrato no es otra cosa que documentacién, pero programar por contratos es dejar en
claro en esa documentacién determinadas responsabilidades:

Precondiciones: Las precondiciones de un contrato son condiciones que deben cumplirse antes
de ejecutar la funcién, es decir, son responsabilidad del que la invoca. Estas pueden ser
referidas a los valores recibidos, a condiciones sobre esos valores, etc. Por ejemplo, para la
funcién copiar_vint dada en la seccién previa son precondiciones que tanto el vector
origen como destino existan y tengan al menos n elementos cada uno.

(Qué implica establecer una precondicién?, que no es responsabilidad de la funcién
validar o considerar qué pasaria si los datos de origen no son correctos. Y si bien en otros
lenguajes esto es un tema de comodidad y de focalizar las validaciones en donde realmente
sean necesarias, en el lenguaje C muchas veces ni aunque pudiéramos podriamos realizar
esa validacién. El ejemplo de la funcién que copia enteros es mdas que valido, ;como
podria saber dentro de la funcién que los tamafios son adecuados si la funcién sélo recibi6
punteros?

2Por cierto, de forma irénica en programacién se suele decir “la documentacion estd en el fuente”, para justificar que
un c6digo sin nada de documentacién todavia puede entenderse simplemente leyéndolo.

91

N G B W N =

N

10
11

12.4. ASSERT() CAPITULO 12. CONTRATOS

Postcondiciones: Las postcondiciones son condiciones que deben cumplirse luego de ejecutar
la funcién, es decir, son responsabilidades del que implementa la funcién. Ahora bien hay
un pero importante: S6lo se podran garantizar las postcondiciones si las precondiciones se
cumplieron. Es decir, el que implementa la funcién se compromete a hacer algo siempre y
cuando sea llamado de manera correcta.

Por ejemplo, en el ejemplo ya dado, la funcién se compromete a que los n elementos del
vector origen sean copiados en el vector destino... ahora bien, sélo si los vectores existen
y son del tamafio adecuado.

Si bien las precondiciones y postcondiciones se pueden escribir de forma explicita en la
documentacién (es decir “Precondiciones: ...”) también pueden ser integradas al texto de las
mismas de forma implicita. Lo importante de la documentacién es que quede en claro qué se
espera recibir en cada pardmetro y qué se devolverd o modificard luego de haber sido invocado
correctamente.

12.4. assert()

Tanto las precondiciones como las postcondiciones entran dentro de lo que se denominan
“aseveraciones” (o “assertions” en inglés). Las aseveraciones son expresiones que tienen que ser
vélidas siempre.

En el lenguaje C se provee un encabezado, <assert.h>, que contiene una macro assert ()
la cual recibe una expresién booleana. La intencién de assert () es aseverar que esa expresion
sea cierta. Por ejemplo:

test.c

#include <assert.h>

/ *
Recibe dos enteros numerador y denominador y calcula la divisidn.
Precondiciones: El denominador debe ser distinto de cero.
Postcondiciones: Devuelve el cociente entre numerador y

— denominador.

*/

int dividir (int numerador, int denominador) A
assert (denominador !'= 0);
return numerador / denominador;

+

Si la expresion evaluara a true assert () no hard nada. Ahora bien, si llegara a evaluar a false,
que en este caso estd asociado con haber violado una precondicién, entonces el programa se
abortard indicando dénde se viol6 la aseveracién. Por ejemplo:

$./test
test: test.c:19: dividir: Assertion ‘denominador !'= 0’ failed.
$

La macro assert () es una herramienta para realizar pruebas cuando se desarrolla cédigo,
porque justamente permite testear cuando algo no estd evaluando a lo que se espera.

Ahora bien, un programa en produccién que se aborta cada vez que no se verifica una
aseveracion puede ser peligroso dependiendo de la aplicacién. Por ejemplo, podriamos aseverar
que una divisién no puede ser por cero o que no puede llamarse a una raiz con un valor
negativo, pero si mi aplicacién fuera un juego 3D que realiza millones de evaluaciones de

92

NN G N

NOTAS DE TA130 SEBASTIAN SANTISI

distancias por segundo el resultado de una divisién por cero tal vez sea un pixel mal visto. Si
hubiera una cuenta invélida, ;prefiero que se cierre el juego o que haya un error de visualizacién
indetectable? Entendamos que en la etapa de desarrollo querria erradicar cualquier fragmento
que opere de forma anémala, pero cuando el cédigo estd siendo utilizado por el usuario esto ya
no es positivo.

La particularidad que tienen las macros de assert () es que pueden ser eliminadas del cédi-
go. Invocando al compilador con el pardmetro ~-DNDEBUG se inhabilitan todas las aseveraciones.
Para el ejemplo anterior:

$ gcc test.c -o test -DNDEBUG

$./test
Excepcién de coma flotante
$

(Nadie dijo que deshabilitar los asserts iba a hacer que el cédigo funcionara.)

12.5. Invariantes de ciclo

En programacién las “invariantes” son condiciones que no se modifican a lo largo de la
ejecucion. Una invariante de ciclo es una condicién que siempre se verificard al comienzo de
cada ciclo de una iteracion.

Ejemplo, si tenemos el cédigo:

int maximo (comnst int v[], size_t n) {
int max = v[0];
for(size t i1 = 1; 1 < n; 1i++)
if (v[i]l > max)
max = v[i];
return max;

b

podemos definir como invariante que max siempre va a tener el maximo del arreglo en el rango
[0..1).

(Para qué nos sirven las invariantes de ciclo? En principio son una definicién formal que
sirve para demostrar algoritmos, pero en la practica nos pueden ayudar a ordenar cémo
encaramos nuestros algoritmos. Por ejemplo, si estuviéramos desarrollando el c6digo, ;cémo
fue que tomamos la decisién de en la linea 2 inicializar max = v[0]? Notar que esa inicializacién
es inmediata mirando nuestra invariante: Si max debe contener siempre el maximo del arreglo
hasta i entonces en la primera iteracion, tiene que contener v [0].

12.6. Alan y Barbara

Cuando se presentaron las precondiciones y postcondiciones se hablé del “que implementa”
y del “que invoca” una funcién. A partir de ahora nos vamos a referir mucho a esos dos roles y
es preferible ponerles un nombre. Los nombres podrian ser el usuario A y el usuario B, pero
preferimos utilizar los nombres Alan y Barbara en honor a los programadores Alan Turing y
Barbara Liskov.

Entonces, cuando hablemos de implementaciones vamos a tener siempre a nuestros dos
personajes:

Alan: El programador que implementa una funcién, o médulo o bloque.

Bérbara: El programador que utiliza esa funcién, o médulo o bloque.

93

12.6. ALAN Y BARBARA CAPITULO 12. CONTRATOS

Cabe destacar que estos personajes no son personas sino que son roles, es decir, cuando
nos refiramos a que Alan hace determinada cosa y Barbara hace determinada otra, no estamos
diciendo que tenga que haber dos programadores involucrados. Es perfectamente esperable
que un programador cuando desarrolle una funcién cumpla el rol de Alan y que cuando utilice
esa misma funcién cumpla el rol de Barbara, no hace falta que haya terceros involucrados.

Del mismo modo los roles de Alan y Barbara son relativos. Si Alan implementa una funcién,
y esa funcién, por ejemplo, utiliza la funcién sqrt () desde el punto de vista de sqrt () el rol
que llamdbamos Alan ahora serd Barbara. Siempre vamos a ser el Alan o la Barbara de alguien
mas.

94

Capitulo 13

Tipo de Dato Abstracto

Tal vez lo hayas notado pero en el Gltimo capitulo no introdujimos nada nuevo del lenguaje
C, esto es porque ya précticamente cubrimos todo lo que tiene el lenguaje. Sin embargo apenas
estamos promediando el curso. A partir de ahora lo que vamos a hacer es profundizar por un
lado en algoritmos y por el otro en construir programas complejos.

Cuando hablamos de programas complejos no hablamos de cédigos de 1000 lineas. Un
programa complejo puede tener cientos de veces esa cantidad. Por ejemplo en el afio 2020
Mozilla Firefox tenia 21 millones de lineas, en el 2021 Linux tenia 30 millones de lineas, mientras
que Chromium tenia cerca de 35 millones de lineas de c6digo. La pregunta es cémo podemos
hacer para mantener organizado cédigo con esa extension.

13.1. Tipo de Dato Abstracto

Hasta el momento cada vez que pusimos cosas en la memoria lo hicimos conociendo la
organizaciéon de esa memoria. Por ejemplo, en la seccién 11.8 vimos dos formas diferentes de
poner en memoria una matriz, del mismo modo que en la seccién 9.1 vimos diversos ejemplos
de empaquetamiento de datos en estructuras. Estos tipos son lo que se llaman tipos concretos.
Para utilizar el tipo necesito conocer cémo es su estructura.

Ahora bien este enfoque de conocer como estan estructuradas las cosas por dentro no
permiten escalar en complejidad. Asi como cuando utilizamos una funcién no queremos saber
cémo es que hace lo que hace (por ejemplo, jcémo hace printf() para mostrar algo por
la pantalla?) queremos extender ese comportamiento también a las estructuras de datos. Si
podemos encapsular los datos de tal manera que no tengamos que preocuparnos por co6mo
estdn implementados y sélamente con utilizarlos para construir nuestros programas, podemos
compartimentar los distintos bloques de un proyecto de tal manera que sea viable construirlo
combinando estos bloques para construir bloques més abstractos y de mas alto nivel.

Si podemos estructurar un tipo detrds de una interfaz basada en llamadas a funciones,
entonces podemos prescindir de conocer cémo esta representado internamente ese tipo y de
cémo manipularlo. Cuando encapsulamos un tipo nos interesa qué y no cémo lo hace. Este
encapsulamiento es lo que se conoce como Tipo de Dato Abstracto (TDA).

En la concepcién del TDA queremos que Alan pueda implementar completo el tipo cono-
ciendo todos sus detalles y que Barbara pueda utilizarlo de forma completamente opaca sin
preocuparse por la estructura o por la complejidad del trabajo de Alan. En nuestro modelo no
s6lo a Barbara no le importa saber cémo lo hizo Alan, vamos a llevarlo maés alla y vamos a
impedir que Barbara sepa cémo estd hecho. Por eso se dice que el tipo es abstracto, desde la
perspectiva de Barbara hace cosas pero no expone cémo las hace.

95

13.2. INTERFAZ CAPITULO 13. TIPO DE DATO ABSTRACTO

13.2. Interfaz

Un TDA va a estar formado por dos cosas, uno es el tipo en si, que puede ser lo que mds
cémodo le quede a Alan, una estructura, un arreglo, un entero, etc. sobre el cual Barbara va a
ser totalmente ignorante al respecto de cdmo se guarda la informacién dentro de él. La otra
cosa es una necesidad, como Béarbara no tiene acceso al tipo, Alan va a tener que proveer todas
las funciones que haga falta segtin las cosas que se puedan hacer con el tipo.

Entonces un TDA es un tipo y un conjunto de funciones, que llamaremos primitivas.

Imaginemos que tenemos un tipo complejo_t que representa a los niimeros complejos C.
Las primitivas que me provea el tipo tendrdn que ser consecuentes con lo que espero hacer con
complejos, por ejemplo sumarlos, restarlos, conjugarlos, etc. Digamos que una interfaz del tipo
podria ser:

complejo_t *complejo_sumar (const complejo_t #*a, const complejo_t *
— b);

complejo_t xcomplejo_restar (const complejo_t *a, const complejo_t
— *b);

complejo_t *complejo_multiplicar (const complejo_t *a, const
— complejo_t *b);

complejo_t *complejo_dividir (const complejo_t *a, comnst complejo_t
— *b);

complejo_t *complejo_conjugar (const complejo_t *a);
complejo_t *complejo_inverso(const complejo_t *a);

Como ya dijimos, estas funciones se llaman “primitivas”.

Ahora bien, si s6lo tuviéramos estas primitivas nuestro tipo seria intitil. Si Barbara no sabe
cémo estd representado el tipo internamente, ;para qué le sirve hacer operaciones si no puede
saber el resultado? Es decir, tengo dos complejos, los sumo, eso me genera un nuevo complejo.
(Cuénto vale ese complejo? Incluso, yendo maés all4, ;de dénde saco los dos complejos que
quiero sumar?

El formato del TDA obliga a que, por fuera de las primitivas que necesito para operar mi
tipo, haya primitivas que sirven tinicamente para gestionar el tipo.

13.2.1. Constructores y destructores

Para empezar a usar el TDA necesito primero alguna primitiva que me devuelva una
instancia de dicho TDA a partir de datos que no pertenezcan al TDA. En nuestro ejemplo de
complejos necesitamos poder generar un complejo desde una parte real e imaginaria, o desde
un moédulo y un argumento o sencillamente tener una primitiva que me devuelva el complejo 0,
o el complejo 1 o el complejo i:

complejo_t *complejo_crear_ri(float real, float imaginaria);
complejo_t xcomplejo_crear_ma(float modulo, float argumento);
complejo_t *complejo_cero();

Las primitivas que crean TDAs se llaman “constructores”.
Del mismo modo que el TDA se crea el TDA tiene que poder destruirse y al desconocer
Barbara qué contiene dentro, tiene que delegar en Alan esta operacién:

void complejo_destruir (complejo_t *c);

La primitiva que destruye un TDA se llama “destructor”.
Notar que todas las primitivas del tipo tienen de prefijo el nombre del tipo complejo_. Esta
es una manera de asociar las primitivas al tipo en cuestién.

96

= W N -

N U W N =

N

10

NOTAS DE TA130 SEBASTIAN SANTISI

13.2.2. Getters y setters

Con los constructores y destructores resolvi la primera parte de mi problema, que era
generar complejos para empezar a operar. Pero de qué me sirve sumar el complejo devuelto
por complejo_crear(l, 2) con complejo_crear(0, 1) siel resultado es otro complejo que es
opaco para mi.

El complejo tiene que tener una forma de extraer su contenido a tipos de datos externos al
TDA, por ejemplo:

float complejo_real(const complejo_t *c);
float complejo_imaginaria(const complejo_t *c);
float complejo_modulo(const complejo_t *c);
float complejo_argumento (const complejo_t *c);

Las primitivas que me dejan obtener datos internos del TDA se llaman “getters”.

Del mismo modo, puedo tener primitivas que me dejen escribir un dato interno del TDA,
como por ejemplo, darle un valor determinado a la parte real o a la imaginaria. Estas primitivas
se denominan “setters”.

El tipo, los constructores, destructores, getters, setters y primitivas en general, constituyen la

interfaz del tipo. Esto mas la documentacién! constituird el contrato del TDA que implementa
Alan y consume Bérbara.

13.3. Béarbara

Con lo presentado hasta el momento, Barbara ya tiene todo lo necesario como para imple-
mentar los célculos que necesite.

Cabe hacer la aclaracién de que la interfaz elegida tal vez no sea la més préctica para
implementar un TDA pero si la mas similar a como se implementan tipos mads... complejos.
Bérbara podria hacer algo como:

complejo_t =*a
complejo_t *Db

complejo_crear_ri(1, 2);
complejo_crear_ri(0, 1);

complejo_t *r complejo_sumar (a, b);
printf ("Real: %f, Imaginaria: %f\n", complejo_real(r),
<~ complejo_imaginaria(r));

complejo_destruir (a);
complejo_destruir (b);
complejo_destruir (c);

(51, tenemos una Bérbara que no se preocupa por si las cosas pueden fallar.)

Notar que implementamos la parte de Barbara basados pura y exclusivamente en el contrato.
No necesitamos nada maés. El nivel de abstraccion es tal que todavia ni siquiera discutimos
como es que Alan va a implementar lo que tiene que implementar. No hace falta, si conocemos
la interfaz del tipo podemos usarlo incluso aunque Alan ni haya empezado a disefiarlo.

En este caso la documentacién es volcar lo que explicamos cuando fundamentamos cada una de estas funciones.

97

O 0 N O Ul s W N

[S o T S G S G S
Ol = W N =, O

O 0 NI O Ul s WD -

NN N = = s b e e
N P, © O 0 NI O Ul b= W NN = O

13.4. ALAN CAPITULO 13. TIPO DE DATO ABSTRACTO

13.4. Alan

Si bien para Béarbara el TDA es un tipo abstracto, para Alan serd un tipo concreto. La
potencia del paradigma es que Alan puede definir el tipo concreto que quiera, cambiarlo mas
adelante, o incluso puede venir otro Alan a proveer una implementacién diferente del mismo
tipo.

Siempre y cuando la representacion que Alan elija sirva para poder resolver los casos de
uso de las primitivas, Alan puede elegir la representacién interna que quiera. Incluso en un
ejemplo tan sencillo como este hay multiples formas de crear el tipo. Por ejemplo:

// E1 tipo es un arreglo de dos elementos (;qué es cada uno?):
typedef float complejo_t [2];

// E1 tipo es una estructura:
typedef struct {

float real, imaginaria;
} complejo_t;

// E1 tipo es otra estructura:
typedef struct {

float modulo, argumento;
} complejo_t;

// Empaquetamos 2 floats de 32 bits en un entero de 64 bits:
typedef uint64_t complejo_t;

Cada representacién tendra ventajas y desventajas, algunas primitivas seran mas faciles de
implementar, otras més dificiles.

Supongamos que implementamos la estructura con parte real e imaginaria, veamos algunas
primitivas:

// Un constructor:
complejo_t *complejo_crear_ri(float real, float imaginaria) {

complejo_t *c = malloc(sizeof (complejo_t));
if (¢ == NULL) return NULL;

c->real = real;

c->imaginaria = imaginaria;

return c;

// E1 destructor:
void complejo_destruir (complejo_t *c) {
free(c);

// Un getter:
float complejo_real(const complejo_t *c) {
return c->real;

}
// Una primitiva genérica:

98

23

24

25

NOTAS DE TA130 SEBASTIAN SANTISI

complejo_t *complejo_sumar (const complejo_t *a, const complejo_t *
— b) {
return complejo_crear_ri(a->real + b->real, a->imaginaria + b
< ->imaginaria);

Mas alld de que se haya elegido un ejemplo sencillo, suele ser comtn que las primitivas de
un TDA sean funciones sencillas y de pocas lineas. Como el tipo va a ser utilizado por Barbara,
entonces la légica de la interfaz tiende a implementar operaciones atémicas y muy concretas,
ademads de que el disefio que se hace tiende a ordenar cémo se resuelven las cosas. Por lejos de
complicar las cosas los TDAs las simplifican y estructuran, tanto para Alan como para Bérbara.

Como un apunte al margen se vuelve al comentario de que tal vez esta no sea la mejor
interfaz para este TDA. ;Por qué?, porque un complejo es un tipo muy sencillo que apenas
tiene dos valores y hacer que cada operacion devuelva una nueva instancia creada con memoria
dindmica genera mucha sobrecarga en nuestro cédigo. Tal vez un tipo tan sencillo como el
complejo podria resolverse con un intermedio entre los tipos concretos y los abstractos donde
las funciones tomen y devuelvan estructuras sin utilizar punteros y Barbara conozca cémo es la
implementacién interna? En ese caso no tendriamos destructores, ni tendriamos que validar
memoria, aunque probablemente seria cémodo tener constructores que armen el tipo.

13.5. Invariantes de representacion

En la seccién 12.5 se definieron las invariantes. En los TDAs existen las invariantes de repre-
sentacion, que van a ser muy importantes en nuestro disefio. Al igual que otras invariantes, las
invariantes de representacion son condiciones que van a ser siempre ciertas en la representacién
interna de los tipos.

La invariante de representacién de un determinado TDA serd algo interno de Alan y su
implementacion. Alan se encargard de definir qué cosas quiere definir como invariante.

(Para qué sirven? La idea es esta, si las invariantes tienen que cumplirse siempre y Alan
es el tnico que puede manipular los datos del tipo, entonces la invariante de representacién
serd a su vez precondicién y postcondicion de todas las primitivas. Es decir, como Alan va a
garantizar que ninguna primitiva va a romper la invariante, entonces puede tener asegurado
que el tipo va a venir siempre con la invariante correcta.

Volvamos al ejemplo de los complejos, pero en este caso Alan definié su representaciéon
interna con struct { float modulo, argumento; }; y tiene que implementar una primitiva
para comparar dos complejos. Por ejemplo:

bool complejo_son_iguales (const complejo_t *a, const complejo_t *b
—) 1
return a->modulo == b->modulo && a->argumento == b->argumento;

}

(Esta bien implementada esta primitiva? Si tengo el complejo 020, ;es el mismo o no que el
complejo 0/7? ;Y el complejo 120 es o no el mismo que 1/27? ;Y el complejo 1/ es o no el
mismo que —1/0?

La primitiva anterior no funciona. Y hacer funcionar a esa primitiva es complicado cuando
comparar dos complejos deberfa ser una tarea sencilla.

(Cambiaria algo si garantizdramos invariantes sobre la representacién? Propongamos esto:

typedef struct {
/* Representa a un numero complejo en su forma polar.

2Vamos a explicar a qué nos referimos un poco mdas adelante.

99

X 3 O U = W

X N3 O Ul s WD

O 0 N O Ul s W N

NN N NN 2 om = e s s
B W NN —m O O 00 N3 O UG k= W N —= O

13.5. INVARIANTES DE REPRESENTACION CAPITULO 13. TIPO DE DATO ABSTRACTO

Invariante de representaciodn:
- modulo >= 0
- 0 <= argumento < 2pi
- 8i modulo = 0 => argumento = 0 */
float modulo, argumento;
} complejo_t;

Si la invariante fuera esa, entonces la implementaciéon de complejo_son_iguales() ya dada
serfa correcta y principalmente sencilla. ;Todo el c6digo seria sencillo? No particularmente,
por ejemplo, el constructor complejo_crear_ma() tendrd que validar y ajustar los pardmetros
recibidos por Barbara quién no conoce ni debe conocer la invariante de Alan. Ahora bien,
esto es algo que se hace tinicamente al modificar o recalcular médulos y argumentos, luego
simplifica el resto de las primitivas dado que podremos contar con que los complejos tendran
una representacion tnica.

Salgamos del ejemplo de los complejos y pensemos por ejemplo en un vector dindmico que
puede almacenar elementos enteros de a uno por vez:

typedef struct {
/* Vector dinamico de enteros.
Invariante de representaciodn:
- v es un vector de n elementos
- v == NULL si y sé6lo si n == 0 %/
int *xv;
size_ t n;
} vector_t;

Y lo que se definié6 como invariante puede parecer poco pero es tremendamente ordenador
sobre como implementar las primitivas, por ejemplo:

vector_t *vector_crear () {
vector_t *v = malloc(sizeof (vector_t));
if (v == NULL) return NULL;

v->v = NULL;
v->n = 0;

return v;

void vector _destruir (vector_t *v) {
free(v->v);

free(v);

+

bool vector_agregar_elemento(vector_t *v, int elemento) {
int *aux = realloc(v->v, (v->n + 1) * sizeof (int));
if (aux == NULL) return false;
vV->V = aux;
v->v[v->n++] = elemento;

return true;

100

NOTAS DE TA130 SEBASTIAN SANTISI

(Podés identificar dénde estamos siendo obligados y dénde estamos usando a nuestro favor la
invariante de representacién?

Tanto en la inicializacién del constructor, como en incrementar el valor de v—>n después de
agregar un elemento estamos haciendo cosas para cumplir la invariante.

Ahora bien, en el destructor estamos liberando v->v sin nunca chequear que el vector esté
vacio, del mismo modo, en la primitiva de agregar elemento estamos redimensionando el
vector sin revisar que esté vacio. Ambas operaciones pueden hacerse con seguridad porque
estd garantizado el comportamiento de free() y realloc() cuando el pardmetro es NULL (ver
seccion 11.7).

Dicho sea de paso, notar que si falla el agregado de un elemento sélo falla esa operacién
y nada mas. El contenido previo del TDA (y su invariante) se preserva. Ni siquiera una falla
grave de memoria deberia romper la invariante.

Volviendo a las cosas que pudimos simplificar porque las habiamos definido en la invariante
debemos remarcar que s6lo pudimos simplificarlas por haberlas definido como invariante. Si no
hubiéramos definido ese invariante (o alguno diferente, no es el tinico posible) no podrfamos
haber asumido nada al respecto de los datos, porque nadie garantizaria una consistencia en
todas las primitivas del tipo. Dicho de otra forma, no podemos asumir nada que no hayamos
documentado como invariante, si lo hiciéramos estariamos modelando mal nuestro tipo.

13.6. Modularizaciéon

Volvamos al ejemplo del TDA de ndmeros complejos. Tenemos a Alan y Barbara codificando
para un mismo proyecto, jpueden desacoplar sus c6digos?

En el préximo capitulo trataremos en detalle el tema de modularizacién, pero para cerrar el
ejemplo explicaremos lo basico aca.

La idea es que Alan y Bérbara puedan trabajar por separado. Es mds, nosotros hablamos de
los roles de Alan y de Barbara como roles que se dan en simultaneo, pero esto no tiene por qué
ser asi. La mayor parte de las veces Alan desarrollé un TDA sin siquiera saber las necesidades
de Barbara y tiempo después Barbara considera que el TDA de Alan es adecuado para resolver
su problema y lo utiliza en su proyecto. Asi suele ser la dindmica con las bibliotecas que
utilizamos.

Repasemos un poco. Habiamos dicho que el contrato era el tipo, la interfaz y la docu-
mentacién. Notar que eso en lenguaje C corresponde a declaraciones y comentarios, no a
definiciones e implementaciones. Si recordamos de cuando vimos el proceso de compilacién los
archivos de encabezados .h contenian justamente definiciones de tipos, etiquetas y prototipos
de funciones.

Entonces, en nuestro tipo el contrato va a terminar siendo un archivo .h provisto por Alan.

Ahora bien, ;como incluimos el tipo en el encabezado? Si Alan definiera la estructura en
este archivo entonces Barbara conocerfa cémo es la representaciéon interna de la estructura.
Bueno, el lenguaje C tiene mecanismos para resolver esto.

En el lenguaje C es viable declarar una estructura: struct complejo; o typedef struct
< complejo compejo_t; sin definirla. Notar que si declaramos una estructura el compilador
no puede conocer su sizeof () y por lo tanto no puede reservar memoria para variables. Es
mas, si tenemos solamente la declaracién tampoco conoce los miembros de la estructura por
lo que no puede utilizarse el operador punto (ni flecha). Si bien desde el punto de vista de
Bérbara esto es exactamente lo que necesitamos, cabe hacerse la pregunta de para qué sirve
declarar una estructura si no puedo ni declarar variables ni acceder a su contenido. Bueno, la
respuesta es que con la declaracién puedo declarar punteros. Recordar que un puntero no es
otra cosa que una direcciéon de memoria, para declarar una variable de tipo puntero sélo hay
que saber el tamafio de las direcciones de memoria, no importa el tamafio del tipo apuntado.

Entonces, podremos definir un archivo complejo.h con el siguiente contenido:

101

O 0 NI O U B W N

e T e e e
N O G s LN~ O

18

19

20

13.6. MODULARIZACION CAPITULO 13. TIPO DE DATO ABSTRACTO

complejo.h

// ARREGLAME: Falta documentar todo esto.
typedef struct complejo complejo_t;

complejo_t *complejo_crear_ri(float real, float imaginaria);
complejo_t *complejo_crear_ma(float modulo, float argumento);
complejo_t *complejo_cero();

void complejo_destruir (complejo_t *c);

complejo_t *complejo_conjugar (const complejo_t *a);
complejo_t *complejo_inverso(const complejo_t *a);
float complejo_real (const complejo_t *c);

float complejo_imaginaria(const complejo_t *c);
float complejo_modulo(const complejo_t *c);

float complejo_argumento (const complejo_t *c);

complejo_t *complejo_sumar (const complejo_t *a, const complejo_t *
— b);

complejo_t xcomplejo_restar (const complejo_t *a, const complejo_t
— *b);

complejo_t *complejo_multiplicar (const complejo_t *a, const
— complejo_t *b);

complejo_t *complejo_dividir (const complejo_t *a, comnst complejo_t
— *b);

Luego Béarbara escribird su “main.c” haciendo un #include de este archivo, y Alan imple-
mentard su complejo.c el cual definird la struct complejo y las funciones.

Como ya dijimos, terminaremos de explicar la modularizacién en el préximo capitulo
dedicado especificamente a eso.

102

Capitulo 14

Modularizacion

14.1. Proceso de compilacién

Ya le dedicamos completo el capitulo 4 a explicar el proceso de compilacion del lenguaje C.
Refresquemos particularmente que es un proceso en tres etapas:

1. Primero viene la etapa de preproceso. Durante esta etapa actta el preprocesador, que
realiza reemplazos, inclusiones, etc. En este paso nuestro cédigo se nutre de archivos de
encabezados .h. Los archivos de encabezados contienen declaraciones de tipos, funciones,
etiquetas, macros, etc.

2. Luego viene la etapa de compilacién. Durante esa etapa acttia el compilador, que traduce
nuestro coédigo fuente en cédigo objeto (que es equivalente al c6digo méquina). Este
proceso no toma nada del exterior, es nuestro c6digo complementado con las declaraciones
que trajo el preprocesador, pero lo tinico que es traducible a cédigo objeto es nuestro
coédigo fuente.

3. Finalmente viene la etapa de enlace. Durante esta etapa actta el enlazador, que junta
nuestro c6digo objeto con el c6digo objeto de las bibliotecas que utilizamos y resuelve
las referencias cruzadas que existan. Ademas el enlazador es el que verifica que haya un
tinico main () y lo establece como punto de entrada.

Por disefio C estd pensado para compilar programas modulares. Si bien hasta el momento
utilizamos el enlazador para juntar el c6digo objeto de nuestro programa con el cédigo objeto
de la biblioteca de C, el enlazador puede combinar multiples cédigos objeto para formar un
tnico ejecutable. Entonces podemos partir nuestro proyecto en mdltiples archivos . c, compilar
cada uno individualmente y luego juntar sus c6digos objetos para formar un ejecutable.

En la invocacién que venimos haciendo del GCC estamos realizando una compilacién
monolitica, es decir, los tres procesos se ejecutan en secuencia y generan un tinico ejecutable.
Ahora bien, el GCC se puede manipular para ejecutar cada uno de los pasos de forma individual.

En este caso nos interesa compilar, o sea, realizar la etapa de preprocesado y compilacién,
para generar un c6digo objeto y luego enlazar el cédigo objeto. Si tuviéramos un fuente.c
podriamos hacer esto:

$ gcc fuente.c -c -Wall -std=c99 -pedantic
$ gcc fuente.o -o programa -1lm

$

La primera linea se encargé de la compilacion y generacion del c6digo objeto fuente.o
mientras que la segunda enlazé el cédigo objeto para generar el programa. Notar que estamos

103

O 0 NI O Ul B W N

_ =
_ O

12
13
14
15
16
17
18

14.2. MODULARIZACION CAPITULO 14. MODULARIZACION

distinguiendo qué pardmetros son de compilacién y cudles de enlace. No tendrfa sentido
pasarle, por ejemplo, -1m a una etapa que no enlaza o -Wall a una etapa que no compila.

Asi como en la segunda linea enlazamos a fuente. o con las bibliotecas 1ibc.so! y 1ibm.so
las bibliotecas de C y matematicas respectivamente, también podemos enlazar contra otros
cédigos objeto. Es decir, podemos realizar multiples compilaciones de archivos .c con -c y
luego enlazarlas todas juntas en un tinico ejecutable. El tinico requisito es que entre todos los
objetos se aporte uno y s6lo un main().

14.2. Modularizaciéon

Como se adelanté en el capitulo anterior, la modularizacién consiste en separar proyectos
en multiples archivos .c y comunicar esos archivos con archivos .h.

En el ejemplo del capitulo anterior desarrollamos un TDA para manejar ntiimeros complejos
e hicimos una aplicacién que los utilizaba. En la seccién 13.6 anticipamos un borrador de cémo
seria la modularizacién.

Habiamos llegado a que tenfamos tres archivos: main.c, donde Barbara implement6 sus
operaciones con complejos y complejo.c y complejo.h donde Alan disefié y documenté su
TDA respectivamente.

Si Barbara definiera su main.c como:

main.c
#include <stdio.h>
#include "complejo.h"
int main(void) {
complejo_t *a = complejo_crear_ri (1, 2);

complejo_t *b complejo_crear_ri(0, 1);

complejo_t *r = complejo_sumar(a, b);

printf ("Real:%f, Imaginaria: %f\n", complejo_real(r),
— complejo_imaginaria(r));

complejo_destruir (a);
complejo_destruir (b);

complejo_destruir (c);

return O;

Podriamos compilar este archivo como:

$ gcc -c main.c -Wall -std=c99 -pedantic
$

Obteniendo el objeto main.o.

Notar un detalle, la inclusién de complejo.h se hizé con comillas dobles ("...") y no
con paréntesis angulares (<. ..>) como hasta el momento. Cuando utilizamos los paréntesis el
compilador sabe que tiene que ir a buscar el archivo de encabezados a la ruta por omisién donde

1. so: “shared object”, otro tipo de objetos.

104

O 00 NI O Ul B W N

_
o

NOTAS DE TA130 SEBASTIAN SANTISI

estan los de sus bibliotecas, en cambio cuando utilizamos comillas estamos diciéndole que
busque el encabezado como una ruta local relativa adonde esta el codigo fuente que estamos
compilando.

De un modo similar Alan incluird a complejo.h en su fuente complejo.c para compilarlo.
No mostramos el contenido completo del archivo complejo.c pero comenzard con:

complejo.c

#include "complejo.h"

#include <stdlib.h>
#include <math.h>

struct complejo {
float real, imaginaria;

ts

// Y aca vendria la implementacién de todas las primitivas

(Para qué le sirve a Alan incluir su propio encabezado? Por un lado hay cosas que estan
definidas en el encabezado y no en el .c, como por ejemplo, la redefinicién typedef struct
< complejo complejo_t;. Por el otro es una buena practica porque forzamos a que las
primitivas que Alan implemente en su cédigo fuente coincidan con los prototipos que estan en
el archivo de encabezados.

Notar que por mas que complejo.h sea “el” encabezado de Alan, Alan todavia tiene que
incluir los encabezados que necesite para su cédigo, stdlib.h para las funciones de memoria
dindmica o math.h para hacer operaciones trigonométricas o de raices. No serfa correcto incluir
esas inclusiones en complejo.h dado que no forman parte del contrato y es irrelevante para
Barbara saber qué utiliz6 internamente Alan para implementar el TDA.

En la préxima seccién completaremos el archivo de encabezado.

14.3. Archivos de encabezados

Si bien ya en la seccién 13.6 mostramos un esquema del archivo de encabezados profundiza-
remos un poco mas aca.

Como ya se dijo dentro del archivo de encabezados habrédn declaraciones de tipos, de
funciones, etiquetas, etc.

Ahora bien, un archivo de encabezado tiene que estar disefiado de tal manera de que si uno
lo incluyera en un archivo de fuentes el mismo no genere errores de compilacién. Por ejemplo,
si el encabezado contuviera una funcién bool vector_asignar(const vector_t *v, size_t
< 1, int elemento);, ni bool ni size_t son cosas del lenguaje. Ya sabemos por experiencia
que si no incluyéramos las bibliotecas donde ellos se definen el cédigo no compilaria. Como no
podemos asumir que quien incluya el encabezado incluya alguna cosa adicional es el mismo
encabezado el que tiene que hacer los #include correspondientes.

Sabemos que bool estd en stdbool.h, ahora bien, ;dénde estd size_t? Si vamos al caso,
venimos utilizando este tipo desde hace rato y nunca mencionamos de dénde sale. No lo
mencionamos porque si utilizamos stdio.h viene, pero también viene si utilizamos stdlib.h,
pero también si utilizamos string.h y otros encabezados mds. ;Entonces estd definido en todos?
No, size_t estd definida en un dnico encabezado, que es el mismo que define NULL, que se llama
stddef .h. Todos los encabezados que mencionamos antes hacen un #include <stddef.h>.

Ahora bien si yo, por ejemplo, incluyera tanto stdio.h como stdlib.h estaria incluyendo
dos veces a stddef .h y por lo tanto definiendo dos veces las cosas que estan ahi. ;Eso no seria
un problema? 51, de hecho seria un problema.

105

N Ul = W DN -

O 0 N O U s W N

==
N = O

13

14
15

14.3. ARCHIVOS DE ENCABEZADOS CAPITULO 14. MODULARIZACION

El preprocesador, ademads de para declarar etiquetas o incluir archivos sirve para realizar
compilaciones condicionales. Esto es, activar o desactivar fragmentos de cédigo segtn el estado
de etiquetas?.

Entonces, si tuviéramos un encabezado miencabezado.h envolveriamos el contenido del
mismo en la siguiente construccién:

miencabezado.h

#ifndef MIENCABEZADO_H
#define MIENCABEZADO_H

// Aca estaria todo el contenido del encabezado

#endif

La instruccién #ifndef significa “si no estd definido”. Es decir, si no estd definida la etiqueta
MIENCABEZADO_H que, por qué lo estaria, si sélo deberia haber un archivo con ese nombre,
entonces hacemos dos cosas: En primer lugar la definimos (si no aclaramos nada, por omisién
se define con el valor 1), para que esté para la proxima y en segundo lugar declaramos todas
las cosas que queriamos declarar en el archivo de encabezado. El #endif es el indicador de que
termind el #ifndef, a diferencia de C, donde marcamos el final de los bloques con llaves en el
preprocesador lo hacemos con esta instruccion.

En la primera inclusién del archivo se define todo lo que haga falta y ademas la etiqueta.
Si hubiera una segunda inclusién no se entrara al #ifndef dado que MIENCABEZADO H ya se
encontraba definido de la vez anterior. Con esta salvaguarda se garantiza que las cosas se
declaren una tnica vez. Todos los archivos de encabezado deben contener esta construccién,
sin excepcion.

Entonces, haciendo una puesta en comun, el archivo complejo.h quedara:

complejo.h

#ifndef COMPLEJO_H
#define COMPLEJO_H

#include <stdbool.h>
typedef struct complejo complejo_t;

// Incluimos s6lo algunas de las primitivas en este ejemplo:

complejo_t *complejo_crear_ri(float real, float imaginaria);

void complejo_destruir (complejo_t *c);

complejo_t *complejo_conjugar (const complejo_t *a);

complejo_t *complejo_sumar (const complejo_t *a, const complejo_t *
— b);

bool complejo_son_iguales (const complejo_t *a, comnst complejo_t *b
=)

#endif

Notar que la existencia de la funcién bool complejo_son_iguales(...) nos fuerza a incluir
stdbool.h.

2Es lo que vimos cuando hablamos de assert (), que podia desactivarse compilando con ~DNDEBUG, que no es otra
cosa que decirle al compilador que defina una etiqueta NDEBUG de valor 1.

106

= W N =

NOTAS DE TA130 SEBASTIAN SANTISI

Y repetimos: No importa qué necesidades de encabezados requiera Alan para compilar
complejo.c, en el encabezado del TDA sélo incluimos lo que es ttil para el contrato y para
que si Barbara incluye el archivo su cédigo compile.

14.4. Make

Si bien con las herramientas que vimos podemos compilar cualquier proyecto sin importar
cudntos archivos posea primero compilando cada cédigo fuente y luego enlazando todos juntos,
ese proceso es tedioso e inconsistente. Presentaremos la herramienta Make que sirve para
automatizar la compilacién.

La herramienta Make utiliza un archivo de nombre Makefile3 para definir las reglas de la
compilacién. Cada regla del archivo Makefile tiene el siguiente formato:

regla: dependencial dependenciaZ2
accionl
accion?

Importante el caracter que precede a las acciones es una tabulacién (*\t’), Make no funciona
si en vez de tabulacién hay caracteres espacio, revisad cémo ingresar tabulaciones en tu editor
de textos.

Antes de realizar la accion para la generacion de la regla se chequearan las dependencias.
Las dependencias a su vez pueden ser reglas o pueden ser archivos. Luego se ejecutaran la
acciones. Por ejemplo:

complejo.o: complejo.c complejo.h
gcc -c complejo.c -Wall -std=c99 -pedantic

Mi regla dice que si voy a construir complejo.o eso depende de los archivos complejo.hy
complejo.c y que hay que ejecutar esa llamada al GCC.

Make no sélo es capaz de realizar la compilacién, también Make es capaz de decidir si debe
o no hacer la compilacién. Si el archivo complejo.o no existiera obviamente debe compilarlo.
Ahora bien, si el archivo ya existiera, jdebe compilarlo de nuevo? Bueno, Make toma esa
decisién en funcién de la fecha de modificacién de la regla y de las dependencias. Si las fecha
de modificacién de las dependencias fuera posterior a la fecha de modificacién de la regla eso
indicaria que hubo cambios en mi c6digo fuente y por lo tanto hay que recompilar. En cambio
si la fecha de generacién del objeto fuera posterior a la de los fuentes, eso significa que ya
compilé la Gltima versién y no necesito recompilar nada.

Esta optimizacién de qué compilar y qué no que hace Make hace que si estoy trabajando
sobre un proyecto muy grande el mismo va a ser compilado completo sélo la primera vez. A
partir de ahi sélo se recompilara lo que haga falta y luego se realizara el enlace final, donde el
enlace es un proceso mucho mas liviando que la compilacién.

Antes de mostrar un ejemplo completo de Makefile observemos que si vamos a hacer
muchas compilaciones vamos a tener que escribir muchas veces los pardmetros del GCC. Ahora
bien, tal vez queramos cambiar esos pardmetros a futuro, por ejempo, queremos debuggear
y agregar -g o queremos lanzar una versién en producciéon y agregar -DNDEBUG. En un caso
asi seria ineficiente tener que editar cada linea de compilacién. Por suerte podemos definir
etiquetas y utilizarlas después.

Dicho esto, el Makefile para compilar nuestro proyecto de complejos:

Makefile

351, con eme maydtscula.

107

O 0 N O Ul s WD -

[e S S G S G S ST
N Ul = W N = O

14.4. MAKE CAPITULO 14. MODULARIZACION

CFLAGS=-Wall -std=c99 -pedantic
LFLAGS=-1m

all: main

main: main.o complejo.o
gcc main.o complejo.o -o main $(LFLAGS)

main.o: main.c complejo.h
gcc $(CFLAGS) -c main.c

complejo.o: complejo.c complejo.h
gcc $(CFLAGS) -c complejo.c

clean:
rm *.0 main

Expliquemos ahora el comando make. Podriamos ejecutar:

$ make

gcc -Wall -std=c99 -pedantic -c¢ main.c

gcc -Wall -std=c99 -pedantic -c complejo.c
gcc main.o complejo.o -o main -1m

$

Make ley6 la definicién de dependencias del archivo Makefile y resolvi6 la primera regla
all. Para construir all tuvo que construir main y eso disparé las diversas invocaciones al GCC.
Si modificiramos main. ¢ e invocdramos de nuevo:

$ make
gcc —-Wall -std=c99 -pedantic -c main.c
gcc main.o complejo.o -o main -1lm

$

verfamos cémo no hubo necesidad de recompilar complejo.o porque las fechas indicaban que
no habia habido modificaciones en sus fuentes.

Notar que existe una regla clean que no es dependencia de ninguna, por lo tanto no va a
ser invocada nunca. Podemos pedirle a Make que ejecute una regla puntual:

$ make clean
rm *.0 main

$

En este caso borrara todos los archivos de la compilacién y dejara el proyecto como antes
de compilarlo. Esta regla suele incluirse tanto para limpiar el proyecto como para forzar el
recompilado. Por ejemplo si modificiramos los flags de compilacién del GCC en el archivo
Makefile eso no modificarfa ninguna de las dependencias pero querriamos volver a generar
todo el proyecto. En un caso asi habria que limpiar el proyecto primero.

Lo que se present6 en este capitulo es una introduccién minima a Make. Este programa es
parte del ecosistema de aplicaciones de C y es un estdndar. Cuando uno descarga bibliotecas o
programas desarrollados en C espera que haya un archivo Makefile o similar®. Es un esténdar
descargar un proyecto y ejecutar make all para compilarlo.

4Existen alternativas superadoras a make para el caso de compilaciones complejas.

108

NOTAS DE TA130 SEBASTIAN SANTISI

14.5. Entidades publicas y privadas

No se dijo de forma explicita, pero por lo que se vio hasta el momento si alguien define una
funcién en un médulo a. c alguien puede utilizarla desde un médulo b. ¢ tan sélo invocandola.
Es cierto, hablamos de tener un a.h que declare a dicha funcién, pero incluso ante la ausencia
de prototipo en el encabezado, la firma podria definirse en el archivo b. c y ser utilizada.

Dicho de otra forma, todas las funciones que definimos en nuestros archivos de cédigo
fuente estdn disponibles para ser utilizadas desde cualquier otro archivo de cédigo fuente. Es
decir, por omisién la visibilidad de las funciones es ptblica a los deméas médulos.

En muchos casos podemos tener funciones que no tenga sentido que sean invocadas desde
afuera. Por ejemplo si se trata de funciones auxiliares a un TDA, las mismas no formarian parte
del contrato e incluso la existencia de esas funciones podria exponer cémo es la representacién
interna.

Podemos hacer que las funciones sean privadas a un tinico médulo anteponiendo la palabra
static a la definicién de la misma. Por ejemplo, si en el archivo a. c definiéramos:

static int a() {
return 5;

}

La funcién a() podria ser invocada desde dentro de a. c pero seria invisible para el enlazador
en el cédigo objeto.

Es importante marcar como static las funciones que no formen parte de la interfaz no
s6lo por paranoia de que Bérbara las utilice si no porque una funcién no documentada puede
colisionar con otra funcién de otro médulo si se definieran dos funciones con el mismo nombre.
Si la funcién no es de utilidad hacia afuera debe quedar delimitada a su médulo.

Algo similar a las funciones pasa con las variables globales. Si definiéramos una variable
global en un moédulo la misma estaria visible para los demads y colisionaria si hubiera una
variable global con el mismo nombre en otro médulo. Entonces podemos hacer:

static const float g = 9.81;

y la variable sera privada del fuente donde se defina.

Ahora bien, ;c6mo hacemos si quisiéramos tener una variable global compartida entre
diferentes médulos? Es decir, querriamos que una tnica variable global sea declarada en un
deterimnado médulo pero usada desde otros. Si nos limitdramos a declarar la variable en dos
modulos distintos tendrfamos una colisién entre dos variables diferentes.

En este caso esto se resuelve “avisandole” al compilador de la existencia de una variable
que esté en otro médulo, donde el enlazador sera el encargado de referenciar. Es algo similar a
cuando declaramos una funcién con un prototipo.

Supongamos que queremos que una variable de a. c se exponga globalmente. En el archivo
a.c simplemente definiremos la variable:

const float g = 9.81;

Notar que la variable es publica.
Luego en el archivo a.h le “avisaremos” al compilador que la variable existe:

extern const float g;

Con el modificador extern el compilador sabe que existe una variable llamada g constante de
tipo flotante, pero no reserva memoria para ella en los lugares donde esté definida. Ahora bien,
cuando compilemos a. c el compilador ahi tendrd la variable declarada y definida sin extern
por lo que si reservard memoria y ademas expondrd el simbolo en el a.o. Cuando el enlazador

109

= W N =

14.6. MACROS DE FUNCION CAPITULO 14. MODULARIZACION

combine los objetos tendra multiples médulos que requieren de g y sélo uno que lo defina,
simplemente enlazard las referencias.

Por completitud mencionaremos otro significado contextual de static no relacionado con
los anteriores. Cuando utilizamos static para una variable dentro de una funcién esa variable
serd una variable privada de dicha funcién pero en vez de vivir en la pila vivira en el espacio
de las variables globales. Es decir, sera una variable de una funcién que tendré persistencia
entre distintas invocaciones a la funcién. Por ejemplo:

int contar () {
static int cuenta = 0;
return ++cuenta;

}

Cada vez que llamemos a la funcién nos devolvera un nimero mas que la vez anterior.

Las variables static tienen varios usos, desde poder devolver punteros a memoria que
persiste sin utilizar memoria dindmica (pero que se sobreescribe su contenido si llamo de nuevo
a la funcién) a tener funciones que recuerdan cosas entre llamadas. Si querés ver ejemplos
podés investigar sobre la funcién asctime () o sobre strtok(), para ver dos usos diferentes.

14.6. Macros de funcion

Si bien son una herramienta desrecomendada, por completitud vamos a hablar de las macros
de funcion.

Se llaman macros de funcién a las macros del preprocesador que realizan reemplazos con
pardmetros. Por ejemplo:

#define DUPLICAR(x) x * 2

Cuando en el cédigo escribamos por ejempo DUPLICAR(3.14) la macro se expandird a 3.14 * 2,
que evaluaré a 6.28.

Ahora bien es importante destacar que las macros no son funciones por lo tanto no hay una
evaluacién de expresiones para inicializar pardmetros. Una macro como la anterior esta mal
escrita y nunca debe definirse asi. ;Qué pasaria si alguien escribiera DUPLICAR(1 + 1)? Eso se
expandiriaa 1 + 1 * 2 lo cual evaluaria a 3. Incluso podria pasar que en algtin contexto de
inclusién hasta el operador de mutiplicacién se asociara con algo mds y el resultado no fuera el
correcto.

Al escribir macros de funcién tenemos que prevenir a toda costa que la precedencia cambie
el orden de evaluacién. Una macro escrita de forma correcta podria ser:

#define MAX(a, b) ((a) > (b) ? (a) : (b))

(Se ve la cantidad de paréntesis? No puede haber menos que esos.
Supongamos la macro:

#define ES MAYUSCULA (c) ((c) >= ’A’ && (c) <= ’Z°)

¢Qué pasaria si escribiéramos ES_MAYUSCULA(getchar ())? Si expandiéramos la macro ob-
tendriamos ((getchar())>= *A’&& (getchar())<= ’Z’)... {Son dos llamadas a getchar()!

Este dltimo problema no puede ser resuelto utilizando macros, se resuelve implementando
funciones. Cuando invocamos una funcién la expresién que pasemos por parametro se evaltia
una tnica vezy ese valor se le pasa a la funcién. Ademds de que la funcién se evaltia como un
todo, que hay conversiones claras de tipos, etc.

Es por esto que si bien las macros son una herramienta del lenguaje, deben ser utilizadas
con criterio y conscientemente de que no son funciones.

110

Capitulo 15

Manejo de archivos

15.1. Introduccion

En el mundo de la computacién los archivos son las entidades en las que persistimos datos,
es decir, queremos almacenar algo para recuperarlo después, esos datos deberan ser archivados
de alguna forma.

Cuando hablamos de archivos hablamos de dos propiedades independientes entre si, por
un lado sus datos, es decir el contenido que queremos persistir y por el otro lado su metadata
que es cémo se llama ese archivo, qué permisos tiene, en qué ubicacién se encuentra.

Los archivos forman parte de un sistema de archivos. En un sistema de archivos los mismos
se organizan en estructuras de archivos y directorios. Los directorios son entidades que dentro
pueden contener archivos y directorios, es decir, una estructura recursiva. Los mismos sirven
para organizar la informacién dado que podemos anidar nuestro archivo dentro de una
secuencia de directorios que forme una cadena légica, por ejemplo Usuarios/Juan/TA130 para
encontrar los archivos de la materia TA130 de Juan que es un Usuario en esa computadora.

En un mismo dispositivo pueden coexistir diferentes sistemas de archivos y ademads de
distinto tipo. Los dispositivos de almacenamiento no dejan de ser otra cosa que memorias, como
la RAM, pero que persisten los datos entre reconexiones. Siendo estos dispositivos memorias
los mismos tienen posiciones numeradas y se utilizan para almacenar y recuperar los bytes
en esas posiciones. Cuando hablamos de diferentes sistemas de archivos queremos decir que
el formato en el cual se almacenan los datos y la metadata dentro del dispositivo pueden ser
diferentes, habiendo muchos formatos distintos y coexistiendo mds de uno en el mismo sistema
operativo.

Incluso las tecnologias de los dispositivos pueden ser diferentes, por ejemplo, almacenando
en discos magnéticos bits segtin su polaridad, o almacenando en dispositivos 6pticos que
pueden reflejar o no un bit, o almacenando en dispositivos de estado sélido que utilizan
semiconductores que conducen o no.

El sistema de archivos es una capa de abstraccién que nos provee el sistema operativo en
el cual nosotros podemos pensar en estas entidades de archivos, con sus datos y su metadata,
guardados dentro de directorios e independizdndonos de dénde o cémo se almacenan esos
archivos.

Incluso mientras que en sistemas Windows los archivos se identifican con su unidad (C:,
D:, etc.) y cada dispositivo fisico (o virtual) genera una unidad en el comun de los sistemas
operativos se omite el concepto de unidad y los dispositivos se pueden asociar a ubicaciones
arbitrarias del drbol de directorios. Por ejemplo, en nuestro ejemplo anterior, tal vez la carpeta de
usuario de Juan se almacena en un disco diferente al del resto de los usuarios con redundancia
para que Juan no pierda los datos en caso de falla.

Mas atin, dentro de la abstraccién que consistuye el sistema de archivos, incluso pueden

111

15.2. INTERACCION CON LOS ARCHIVOS CAPITULO 15. MANEJO DE ARCHIVOS

mostrarse como archivos y directorios cosas que no son dispositivos fisicos. Por ejemplo,
unidades de red, o un dispositivo que enchufemos como un teléfono celular o una cimara de
fotos, o cualquier entidad o protocolo que pueda pensarse como un canal donde escribir datos
o del cual leer informacién.

La idea del sistema de archivos es uniformizar todos los detalles de implementacién y
simplificarlos en que un archivo tiene una ruta, que serd su ubicacién dentro del arbol de
unidades y directorios y que si conozco esa ruta (y tengo los permisos suficientes) puedo
acceder a su contenido. Si eso realmente es un archivo o es otro tipo de entidad virtual o si estd
almacenado remotamente no nos interesa.

15.2. Interaccion con los archivos

Dado que el concepto de archivo es una abstraccién y que constituye una interfaz de alto
nivel que provee el sistema operativo, al igual que en el caso de la memoria serd un recurso que
gestionaremos a través de éL

De forma simplificada la secuencia empezara diciéndole al sistema operativo que queremos
tener acceso a determinado archivo. Para referirnos a nuestro archivo lo haremos por su ruta,
donde llamamos ruta a la secuencia de unidades y directorios que dan la ubicacién tinica del
archivo. Por ejemplo:

/home/juan/TA130/ejl.c

podria ser la ruta completa del ej1.c que el usuario Juan tiene en su carpeta personal en un
sistema basado en Unix, mientras que

D:\Usuarios\Juan\TA130\ejl.c

podria ser una ruta similar en un sistema Windows. En el caso de Windows D: sera una unidad,
por ejemplo una particién determinada de un disco rigido mientras que en el caso de Unix
todos los archivos penden del directorio raiz / sin importar su unidad, las unidades se “montan”
en cualquier ruta. También cambian en uno y otro caso los separadores de directorio siendo /
en Unix y \ en Windows. Y hay més diferencias, como por ejemplo que en Unix importan las
mayusculas y mintisculas, no existe el concepto de extensién, los nombres pueden contener
cualquier cardcter y una serie mds de caracteristicas en las que no vamos a profundizar.

Las rutas que acabamos de dar, que comienzan con / en el caso de Unix y con la unidad
(por ejemplo D:) en el caso de Windows se denominan rutas absolutas. Es decir, hay un solo
archivo que responde a esa ruta en todo el sistema operativo y eso constituye un identificador
tnico. No importa en dénde esté ubicado, la ruta absoluta me permite identificar un archivo de
forma univoca.

Ahora bien, en ambos sistemas, si estuviera ubicado en la respectiva carpeta personal de Juan
y quisiera referirme al mismo archivo podria hacerlo como TA130/ej1.c (o con las barras inver-
tidas en Windows). Notar que esta ruta no empieza ni con la raiz ni con la unidad, es una ruta
relativa. Si estoy parado en /home/juan esta ruta se traducird como /home/juan/TA130/ejl.c,
pero si estuviera en /usr/1ib se convertird en /usr/1ib/TA130/ej1l.c. Se dice entonces que
es una ruta relativa, porque segin dénde esté posicionado va a hacer referencia a diferentes
ubicaciones.

Tiene sentido utilizar rutas relativas por simplicidad porque son mds cortas, pero también
cuando desconocemos la ruta absoluta. Por ejemplo, cuando hablamos de modularizacién en el
capitulo 14 nosotros podemos distribuir un proyecto para que cualquier persona se lo descargue
y lo compile en su computadora. Nosotros no sabemos en qué lugar de la computadora va a
descargarlo, ni tampoco podemos imponerlo. Entonces, cuando incluimos un archivo haciendo
#include "archivo.h" utilizamos rutas relativas. Es decir, ese archivo .h debera estar en la

112

NOTAS DE TA130 SEBASTIAN SANTISI

misma ruta que el .c que lo incluye. Eso le da flexibilidad al usuario de compilarlo donde
prefiera.

Volviendo a la interaccién con el sistema operativo, entonces nosotros le pediremos abrir
el archivo dandole su ruta. Esta operacién podra concretarse o no dependiendo de si la ruta
es correcta, el archivo existe, los permisos de mi usuario son suficientes para manipularlo, el
archivo no estd ocupado y un sinfin de eventualidades que nos exceden y podrian suceder.
A diferencia de los pedidos de memoria donde una falla en el pedido indicaria que se agot6
la memoria total del dispositivo y siempre podria decir “voy a pedir sélo 2 bytes, no puede
fallar”! hay tantas cosas externas que condicionan el acceso a un archivo que nunca podemos
asumir que pudo abrirse sin chequearlo. Asumamos que el archivo pudo abrirse.

Los archivos son entidades de acceso secuencial, lo que ya llamamos streams (o flujos).
Cuando abrimos un archivo la abstraccién setea un cursor al primer byte de dicho archivo.
Cada vez que hagamos, por ejemplo, una operacién de lectura, se devolverd el valor en ese byte
y se adelantard una posicién el cursor. Si hiciésemos una operacién de escritura, se escribira en
ese byte y se adelantard el cursor. Es decir, los archivos se recorren desde el comienzo hasta el
final avanzando de a una posicién por vez de forma automatica.

Si bien existe la posibilidad manipular el cursor para acceder a posiciones de forma aleatoria,
preferiremos no hacerlo nunca. Todos los dispositivos fisicos estan disefiados para acceder
en forma secuencial. Incluso hay dispositivos que no soportan ni rebobinar ni avanzar en el
tiempo. Esto es parte del concepto de stream, tenemos que considerar a la informacién como
una secuencia de bytes que recibimos o enviamos con un determinado orden, si los dejamos
pasar los perdemos, si ya los emitimos no podemos arrepentirnos. Es el concepto de entrada
salida que vimos cuando hablamos de la interaccién con el usuario. ;Qué seria retroceder la
entrada del usuario?, ;pedirle que vuelva a ingresar lo que ya ingres6? Entonces en el modelo
de archivos de C vamos a considerar que toda lectura o escritura se realiza de forma secuencial
y en una tinica pasada.

Una vez abierto el archivo, con el cursor puesto en la primera posicién podremos escribir o
leer tantas veces como queramos o hasta agotar el recurso. Cuando terminemos esta operacién
entonces tendremos que liberarlo. Al igual que lo que dijimos con respecto a la apertura, la
liberacion es mucho mas importante que la de la memoria, no devolver un archivo podria
implicar que los cambios que realicemos en él nunca se vuelquen fisicamente en el dispositivo,
podria dejarlo inaccesible en el sistema de archivos, podria incluso corromperlo. Los archivos
son recursos escasos y ademads recursos compartidos, tenemos que minimizar el tiempo que
nuestras aplicaciones los bloquean.

15.3. El tipo FILE

Siendo que los archivos son una abstraccion del sistema operativo no es de extrafiar que
la implementacién de archivos en la biblioteca de C sea a través de un TDA. Como parte
de la funcionalidad de entrada/salida el compilador implementa el tipo FILE que sirve para
manipular archivos. Siendo un TDA tendrd un constructor, que se corresponde con abrir el
archivo, un destructor, que lo cierra y libera sus recursos, y luego primitivas que sirven para
leer o para escribir datos en él.

Empecemos por ellos:

FILE xfopen(const char *ruta, const char *modo);
int fclose(FILE *f);

El constructor fopen() intenta abrir el archivo dado por la ruta y en el modo que le
indiquemos y nos devuelve el TDA creado o NULL en caso de falla. Cabe destacar que en la ruta

No, tampoco pueden hacer esa asuncién en el curso.

113

15.4. ARCHIVOS DE TEXTO CAPITULO 15. MANEJO DE ARCHIVOS

podemos utilizar / como separador de directorios independientemente de la plataforma en la
que estemos, esto es importante porque las barras invertidas en C son el caracter de escape y es
muy frecuente olvidarse de escapear una barra. El destructor fclose () libera los recursos del
archivo £, devuelve 0 si el archivo no tuvo problemas o EOF si si los tuvo. Cuando se habla de
“tener problemas” no es durante el cierre sino sobre toda la vida del archivo. Si bien todas las
primitivas del archivo nos indican si hubo éxito o no en la operacién que quisimos realizar,
muchas veces es engorroso validar en cada una de las operaciones de lectura o de escritura. Si
hubiera una falla la misma serfa recordada por el TDA y al momendo del cierre, si no es que es
ya muy tarde, podemos validar una tnica vez si todo el proceso fue exitoso o no. Dependiendo
de la aplicacién puede ser adecuado o no.

15.3.1. El modo

El segundo parametro del constructor es el modo, el modo lo que va a dar es informacién
de qué queremos hacer con el archivo. El estdindar provee multiples modos pero nosotros nos
centraremos en solamente 3, dado que los demds no son usuales en programacién de alto nivel.

A diferencia de lo que se explic6 genéricamente, en C se suelen abrir flujos o de lectura o de
escritura, pero no de ambas a la vez. El modo principalmente indicara si estamos abriendo el
archivo para leer de él o para escribir en él. Si el archivo fue abierto para lectura tendremos que
utilizar primitivas de lectura, si lo abrimos para escritura tendremos que utilizar primitivas de
escritura.

Los modos més usuales son:

r: Abre el archivo en modo lectura (read). Si el archivo no existe falla.

w: Abre el archivo en modo escritura (write). Si el archivo no existe lo crea, si el archivo existe
lo trunca, esto es elimina todo su contenido.

a: Abre el archivo en modo afiadidura (append), que es un modo de escritura. Si el archivo no
existe lo crea, si el archivo existe el cursor se ubica al final del mismo, es decir lo que
escriba se escribird al final de lo que ya estaba.

Cabe aclarar que en todos los casos también hay fallas si las rutas son incorrectas, los permisos
no son adecuados, etc.
Hay otra indicacién de modo que es ortogonal a estas vistas que retomaremos mds adelante.

15.4. Archivos de texto

Llamamos archivos de texto, o de texto sencillo (o texto plano por una mala traduccién de
plain text) a los archivos que contienen caracteres. Es decir, archivos que estdn pensados para
ser legibles por un ser humano.

Cuando manipulemos archivos de texto tendremos, al igual que cuando hablamos de
interaccion con el usuario (ver seccién 6.8), dos estrategias principales: Interactuar de a un
cardcter por vez o interactuar de a lineas.

Las funciones de lectura en archivos de texto son:

int fgetc (FILE *f);
char *fgets(char *s, int size, FILE *f);

La funcién fgetc() lee un cardcter de un archivo f (abierto en modo lectura, no habria que
aclararlo) y lo devuevle, en caso de falla devuelve EOF. La funcién fgets() es una vieja
conocida, lee una linea del archivo f hasta alcanzar el *\n’ o size-1 caracteres y la almacena
en s, devuelve s o NULL en caso de falla.

114

O 00 NI O U B W N

P e S S S e T
AN Ul = W N = O

NOTAS DE TA130 SEBASTIAN SANTISI

En ambos casos cuando decimos falla podemos querer decir tanto que algo fall6 realmente
o que se terminé el archivo f y ya no hay nada mas que leer. En C no podemos anticipar
cuando se termina un archivo, nos enteraremos que se terminé cuando intentemos leer més
alla del final. La lectura del dltimo caracter serd totalmente normal y el archivo todavia estara
no terminado incluso aunque el cursor ya se haya incrementado mds alléd del final. Al leer con
el cursor més alla del final se disparé la sefial de final de archivo.

De modo anélogo, las funciones de escritura de archivos de texto son:

int fputc(int c, FILE *f);
int fputs(const char xs, FILE xf);
int fprintf (FILE *f, comnst char *xformato, ...);

La funcién fputc () escribe el cardcter c en el archivo f. La funcién fputs () imprime la cadena
s en el archivo f. La funcién fprintf () imprime segtin el formato en el archivo f. Todas estas
funciones devuelven un ntimero positivo si todo funcioné bien (en el caso de fputc () el cardcter
impreso, en las otras el nimero de bytes que escribieron) o EOF en caso de falla.

Por ejemplo:

#include <stdio.h>

int main(void) {

FILE *f = fopen("TA130/ejl.c", "r");

if (f == NULL) {
fprintf (stderr, "No,pudoabrirse_ el archivo.\n");
return 1;

+

int c;

while ((c = fgetc(f)) != EQOF)

putchar (c);

fclose (f);
return O;

by

Abre el archivo de ruta relativa TA130/ej1.c? en modo lectura, luego lee del mismo de a un
cardcter por vez hasta que se termine la entrada e imprime cada uno de esos caracteres por
stdout.

15.4.1. stdin, stdout y stderr

Senalemos el elefante en la habitacion, venimos utilizando varias de las funciones de archivos
desde que hablamos de interaccién con el usuario en la seccién 6.8, y esto es porque los flujos
de C internamente son archivos. Es decir, en algin lugar estd definido:

FILE *stdin, *stout, *xstderr;

y es el compilador el que se encarga de abrir estos archivos si los utilizamos.?

Siendo que ya estamos familarizados con flujos de texto, e incluso con utilizar archivos
como si fueran flujos (ver 6.8.5) utilicemos ese conocimiento previo para asimilar archivos.

20 TA130\ej1.c, si estuviéramos en Windows.
3Si en algtin momento notaste que Valgrind te indicaba pedidos de memoria que no hiciste, probablemente sean los
buffers de estos flujos.

115

15.4. ARCHIVOS DE TEXTO CAPITULO 15. MANEJO DE ARCHIVOS

Como se viene diciendo repetidas veces en este capitulo interactuar con archivos es similar a
interactuar con el usuario, hay caracteres en secuencia que podemos leer o escribir. Las funciones
para leerlos y escribirlos en algunos casos son similares, en otros casos son literalmente la
misma funcién. En muchos casos las funciones de interaccién son wrappers de las funciones
de archivos, por ejemplo putchar(c) ; no es otra cosa que fputc(c, stdout);, getchar(); es
fgetc(stdin); y printf(...); es fprintf (stdout, ...);.

Y jatencién! la biblioteca es inconsistente, puts(s) ; y fputs(s, f); no son equivalentes.
La primera imprime por stdout la cadena s y ademds imprime un ’\n’. En cambio fputs ()
imprime solamente s sin agregar nada maés.

154.2. El ’\n’

Antes que nada reiteremos lo que dijimos en la seccién anterior, los flujos con los que
estamos interactuando desde el hola mundo son archivos, conocemos cémo se comportan.
Recordemos entonces el hola mundo:

printf ("Hola_ mundo\n");

En su momento dijimos que el ’\n’, el caracter de line feed (LF), imprimia “un enter” al
final de la linea. Y estd bien la afirmacién, pero es mas complejo.

El caracter ’\n’ es el cardcter nimero 10 en la tabla ASCII. Ahora bien, s6lo en sistemas
operativos derivados de Unix ’\n’ dispara un final de linea.

En sistemas operativos derivados de Macintosh (Apple) el final de linea se dispara con el
caracter ’\r’, el caracter de carriage return (CR), el 13 de la tabla ASCIL

Y en sistemas operativos derivados de DOS (Microsoft) el final de linea se dispara con la
secuencia "\r\n" (CR-LF).

Con esto queremos decir que diferentes terminal necesitan diferentes secuencias de caracteres
para generar el final de linea. Ahora bien, cuando presentamos el hola mundo no hicimos
ningtin comentario al respecto de la portabilidad de haber finalizado con ’\n’ en distintas
plataformas... y no lo hicimos porque el hola mundo que presentamos ya es portable.*

El compilador conoce la plataforma en la cual estamos y sabe que semanticamente para
C imprimir un ’\n’ significa “imprimir un final de linea”. Entonces, se toma la libertad de
reemplazar tanto en las operaciones de entrada como en las operaciones de salida esta entidad
por lo que corresponda. Esto quiere decir que cuando manipulemos streams de texto en
Windows escribir un ’\n’ se reemplazara por escribir la secuencia {13, 10} y también significa
que si estamos en un sistema operativo de Apple cuando se lea el byte 13 a nosotros nos llegara
el cardcter ’\n’. Es decir, se hard una traduccién en uno y otro sentido para que para nosotros
sea natural que ’\n’ es el finalizador de lineas, como en Unix, el sistema operativo que le dié
nacimiento al lenguaje C.>

Esto que estamos mencionando es una caracteristica que nos interesa particularmente para
archivos de texto, y profundizaremos en esto en la siguiente seccién.

Siendo que cuando compilemos un programa para Windows funcionard en Windows y
cuando compilemos un programa para Mac funcionara en Mac los archivos de texto® serdn
consistentes con la plataforma en la que estemos. La incompatibilidad de los archivos de textos
en diferentes plataformas nos interesard sélo si quisiéramos abrir un archivo generado en
Windows en un sistema operativo con otra convencién de finalizacién de linea, pero esto serd
algo que no podremos resolver con archivos de texto.

4Voy a omitir decir esta vez “y con esto terminamos de entender el hola mundo” porque ya debe ser la décima vez que lo
decimos en este apunte.

5Similar a lo que dijimos del separador de directorios en las rutas para fopen().

6Y los flujos estandar de la terminal.

116

NOTAS DE TA130 SEBASTIAN SANTISI

15.5. Archivos binarios

En contraposicién con los archivos de texto, los archivos binarios no estan pensados para
ser legibles, en un archivo binario se vuelcan variables del mismo modo (o de forma similar)
a como estan en memoria. Es decir, si en la memoria tengo un entero de 16 bits de contenido
0xDEAD en un archivo de texto podria imprimirse por ejemplo como "57005\n" una secuencia
de caracteres en base decimal. En binario sencillamente se podria escribir como la secuencia
de bytes {0xDE, 0xAD}... aunque también podria escribirse como la secuencia {OxAD, OxDE}.
Antes de explicar por qué hay dos formas posibles de escritura cerremos la idea, y digamos,
se escribiran 16 bits, tal cual como esos bits estaban en la memoria. Son 2 bytes, nada mas, no
hay una traduccién a ASCIL Y escribir los datos tal cual como estaban en la memoria implica
que cuando se lean se pueden subir a la memoria tal cual como estdn en el archivo y eso ya
representard de nuevo la cantidad 0xDEAD.

Al respecto de las dos formas de almacenar 0xDEAD en memoria hay platarformas donde
los bytes de los nlimeros se almacenan primero los mas pesados y después los mas livianos
y otras en las que se almacenan al revés. La primera convencion se llama big-endian mientras
que la otra se llama little-endian. Como con todo, si hasta ahora no nos preocupamos por
esto, ni siquiera cuando presentamos el manejo de bits a bajo nivel es porque esto es un
detalle de implementacién que no afecta a ninguna operacién. Es mas ni siquiera es sencillo
diagnosticar si estamos en una plataforma de un tipo o del otro... ahora bien, esto si nos
interesard si quisiéramos levantar en una plataforma lo que generamos en otra. Aunque
también nos preocuparad si los enteros tienen el mismo tamario en una u otra, o cémo se alinean
las estructuras, etc.

Se puede decir que hay dos universos totalmente disjuntos de aplicaciones de archivos
binarios: El primero es persistir entidades de la memoria de mi aplicacién en un achivo para
recuperarlas luego. A diferencia de escribir en modo texto, donde tengo que procesar los datos y
convertirlos, escribir datos binarios se limita sencillamente a realizar un volcado de la memoria.
Por lo que dijimos en el péarrafo anterior, esta persistencia depende de que nunca pretenda
llevarme ese volcado a otra plataforma. El segundo es codificar dentro de un archivo datos de
algtin formato bien conocido, como formatos de imagenes, de documentos, de audio, video,
etc. En este caso lo importante es la interoperabilidad, no importa en qué dispositivo abramos
una imagen JPEG, queremos ver la imagen que ella representa, es por eso que en ese tipo
de formatos habran especificaciones formales que diran cémo se codifican los datos, con qué
tamafios, con qué endianness, etc.

15.5.1. El modo binario

Imaginemos que tenemos el entero de 16 bits 0xODOA, prestar atencién a sus bytes que no
son otros que {13, 10}’ o, expresado de otra forma, {’\r’, ’\n’}. Si quisiéramos escribir
esa secuencia de bytes en un sistema Windows dijimos que al querer escribir ’\n’ la capa
de abstraccién del compilador lo reemplazard por "\r\n". Analogamente, si tuviéramos un
archivo que contuviera la secuencia 0x0DOA y lo leyéramos en Windows obtendriamos en vez
de dos bytes apenas un ’\n’. Vamos a tener estos problemas en todas las plataformas salvo en
Unix donde lo que representamos en C como ’\n’ se representa en el sistema operativo del
mismo modo.

Es evidente que esta caracteristica que nos resulta tan comoda para manipular archivos
de texto va a romper por completo el procesamiento de archivos binarios. Por eso es que hay
un modo adicional a los que ya vimos que es el modo b (binary) que se puede agregar a los
modos que ya vimos, por ejemplo "wb" para escribir en modo binario. Abrir un archivo en
modo binario desactiva la traduccién del ’\n’, en modo binario al archivo le llega exactamente

7En el orden que corresponda segtin el endianness de la plataforma.

117

O 00 NI O U B W N

= e
W= O

14
15
16
17
18
19

20
21
22
23
24

15.5. ARCHIVOS BINARIOS CAPITULO 15. MANEJO DE ARCHIVOS

lo que se escribid y lo mismo vale para la lectura.

15.5.2. Funciones

Abrir un archivo en modo binario no inhabilita usar las primitivas que ya vimos de lectura
y escritura, pero probablemente no nos sirvan para las operaciones que queremos realizar.

Como dijimos, la manipulacién binaria implica querer volcar desde y hacia la memoria, y se
provee un par de funciones para realizar esta operacién:

size_t fwrite(comnst void *ptr, size_t size, size_t nmemb, FILE xf)
—
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *f);

Como se ve ambas funciones tienen practicamene la misma firma. La primera escribe en un
archivo (es decir vuelca desde la memoria), la segunda lee de un archivo (es decir vuelca hacia
la memoria). Los datos en memoria estdn en ptr, cada uno de los datos mide size, hay nmemb
datos y el archivo a operar es f. Las funciones devuelven cuintos datos pudieron escribir/leer
respectivamente.

Por ejemplo, si quisiéramos volcar un vector de enteros en un archivo:

#include <stdio.h>

int main(void) {
int v([5] = {1, 2, 3, 4, 5};

FILE *f = fopen("vector.bin", "wb");
if (f == NULL) A
fprintf (stderr, "No,pudoabrirse_ el archivo\n");
return 1;
¥
if (fwrite(v, sizeof(int), 5, f) != 5) {
fprintf (stderr, "Fallélaescrituradegyalgunode los datos
— \n");
fclose (f);
return 1;
}
if (fclose(f) == EQOF) {
fprintf (stderr, "Huboyalguna,fallaescribiendoen el
< archivol\n");
return 1;
+

return O;

}

Abrimos un archivo relativo vector.bin para escribir en modo binario. Intentamos escribir los
5 enteros del vector v en bloque. Como la funcién nos indica cudntos elementos pudo escribir
deberia devolvernos que escribi6 los 5, cualquier otro valor que devuelva serd un error. Luego
estamos también validando el valor de retorno de fclose (). Recordemos que dijimos que al
cerrar el archivo nos avisaba si habfa habido algtn error a lo largo de toda la manipulacién del
archivo, por lo que en este ejemplo estamos validando de forma redundante. Por lo general,

118

N Ul B W N =

NOTAS DE TA130 SEBASTIAN SANTISI

segun la criticidad del problema, nos interesara o validar cada una de las lecturas/escrituras o
sencillamente validar tnicamente al cerrarlo.
Miremos el contenido del archivo en una plataforma x86:

$ hd vector.bin

00000000 01 00 00 00 02 00 00 00 03 00 00 00 04 00 00 00 |...uvviiinnn..
00000010 05 00 00 00 [...

00000014

$

El comando hd (hex dump) muestra cada uno de los bytes de un archivo en formato hexadecimal.
La primera columa es el indice, luego vienen los bytes, y la tltima columna mostrard la
representaciéon ASCII en caso de tratarse de caracteres imprimibles (en este caso ninguno lo es).
Como se puede observar x86 es una plataforma de 32 bits de tipo little-endian.

El pardmetro de retorno de fread () no sélo nos sirve para validar lo que intentamos leer,
también nos puede servir para leer los datos que haya en un archivo, por ejemplo con el
siguiente fragmento:

FILE *f = fopen("vector.bin", "rb");

if (f == NULL) return 1;

int v[100];

size t n = fread(v, sizeof (int), 100, f);
// n ==5

fclose (f);

Intentamos leer hasta 100 enteros del archivo que generamos antes, como el archivo se termina
al quinto entero nos dird que pudo leer s6lo 5, no importa que no hayamos leido 100. Es més, si
hubierdmos leido 100 darfa para sospechar si quedaron enteros sin leer del archivo.

15.5.3. Lectura independiente del endianness

Los ejemplos anteriores son volcados de memoria en crudo y dependen de la plataforma.
Dijimos que esa era una de las aplicaciones de archivos binarios, pero también dijimos que hay
todo un universo donde querremos leer o escribir formatos conocidos donde se especifica un
determinado endianness.

Si tuviera que escribir un entero de 32 bits en little-endian y supiera que estoy en x86 y
con un GCC que escribe niameros de 32 bits, podria hacer lo que hice antes. Ahora bien, mi
coédigo no va a ser portable. Si alguien compilara el mismo c6digo en otra plataforma no estaria
garantizado ni que se escribieran 32 bits ni el endianness. Entonces veamos cémo podemos
hacer para leer o escribir en un formato especifico independientemente de la plataforma en la
que estemos.

Supongamos que sabemos que un determinado formato contiene un entero de 32 bits escrito
en little-endian. Dado que el endianness afecta sélo a datos multibyte si nosotros leyéramos

uint8_t bytes [4];
fread(bytes, 1, 4, f);

sabriamos que en bytes[0] estd el byte mads liviano, en bytes[1] el siguiente y asi, porque nos
dijeron que el archivo codificaba enteros de 32 bits en little-endian.

(Sabemos formar un ntimero de 32 bits juntando 4 bytes separados? Claro que sabemos, lo
vimos en el capitulo 10:

uint32_t dato = bytes[0] | bytes[1] << 8 | bytes[2] << 16 | bytes
— [3] << 24;

119

15.5. ARCHIVOS BINARIOS CAPITULO 15. MANEJO DE ARCHIVOS

No olvidemos de que el endianness es algo interno de la arquitectura que no afecta a cémo
vemos las operaciones, el byte que desplazamos 24 veces a la izquierda va a quedar en el byte
mds pesado de dato. No importa si en la memoria ese byte se almacena en &dato o 3 bytes mds
adelante, serd el byte mas pesado.

Andlogamente podemos descomponer cualquier dato de cualquier tamafio en los bytes que
lo componen y ordenarlos para escribirlos de forma individual en el endianness que queramos,
sin importar el endianness de nuestra plataforma.

120

Capitulo 16

Argumentos en Linea de Comandos
(CLA)

16.1. Argumentos

Recordemos la compilacién del hola mundo:
$ gcc hola.c -o hola.exe -std=c99

El GCC es un programa, particularmente programado en C!, y estd obteniendo informacién
del usuario (de nosotros) de una forma diferente a la que nosotros conocemos. E1 GCC no es un
programa interactivo, es decir, nunca nos pregunta cosas que nosotros ingresamos por stdin
si no que nosotros le decimos qué queremos hacer en el momento de la ejecucién pasdndole
pardmetros en la invocacién.

El estdndar de C admite dos posibles firmas para la funcién main(). Una es la firma que ya
vimos int main(void) mientras que la otra firma es: nt man(int argc, char *argv[]) ...

Esta firma recibe dos parametros: Un entero y un arreglo de cadenas de caracteres. Si
bien es convencién llamar a estos pardmetros argc (cantidad de argumentos) y argv (vector
de argumentos) respectivamente, podriamos usar cualquier nombre?. El sistema operativo al
realizar la invocacién serd el responsable por pasarle estos pardmetros al main() ya que esta
funcién es el punto de entrada.

En el ejemplo del GCC que vimos al comienzo el sistema operativo generaria esta llamada:
main(5, {"gcc", "hola.c", "-o", "hola.exe", "-std=c99", NULL});. Es decir, como su
nombre lo indica, argc es la cantidad de argumentos suministrados y argv es un vector con
cada uno de ellos. Notar que argv mide uno mads, porque contiene el centinela NULL para
indicar la finalizacién, lo cual es redundante con argc dado que argv[argc] == NULL. Notar
que el primer argumento es el nombre del programa, entonces nunca puede haber menos de
un argumento porque el programa fue invocado para ejecutarlo.

Sobre el tema en si no hay mucho méas que decir, lo complejo no es qué recibe un programa
si no como operarlo después. Es decir, ;como hace el GCC para activar o desactivar opciones
en funcién de sus argumentos, procesar estos argumentos, etc? Bueno, eso ya tendra que ver
con la funcionalidad del GCC.

Los argumentos en linea de comandos son ttiles cuando queremos generar programas
no interactivos, es decir, que no requieran un operador ejecutandolos y su invocacién esta
automatizada. También son précticos cuando tenemos programas que tienen muchas opciones
y modos de funcionamiento®, es mucho mas préctico que el usuario lea el manual y evaltie

1;Con qué compilador de C compilamos un compilador de C programado en C?, ;eh?
2Pero es convencién llamarlos asi, entonces no uses otro nombre.
3Si bien nosotros sélo vimos una decena, el GCC tiene mas de 5000 parametros.

121

NGB W N =

N

10
11
12
13
14
15
16

16.2. USO DE ARGUMENT@BITULO 16. ARGUMENTOS EN LINEA DE COMANDOS (CLA)

cudles opciones quiere activar y las proporcione al invocar a que el programa le pregunte por
cada una de esas opciones.

Cabe destacar que recibir opciones por argumentos no es excluyente con interactuar luego
con el usuario, son dos maneras de controlar el funcionamiento de un programa.

16.2. Uso de argumentos

Veamos un ejemplo de un programa con argumentos:

sumar.c

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char xargv[]) {

if (argc '= 3) {
fprintf (stderr, "Suma_dos_numeros._ Uso:_%s,<numl>_ <num2>\n
— ", argv[0]);

return 1;

float nl = atof (argv[1]);
float n2 atof (argv [2]);

printf ("%f\n", nl + n2);

return O;

Se espera que el programa se use asi:

$./sumar

Suma dos nimeros. Uso: ./sumar <numil> <num2>
$./sumar 4 7

11

$

Siendo que el programa no interacttia con el usuario, entonces el programa tiene que poder
guiar a un usuario que no sepa como invocar al programa. Dada la invocacién que nosotros
esperamos donde necesitamos recibir dos niimeros ademds del nombre del programa, entonces
serd valida una invocacién con 3 argumentos. Ese es el chequeo que hacemos para mostrar la
ayuda si no se valida. Notar como al mostrar la ayuda podemos obtener el nombre de nuestro
programa que estd contenido en argv[0].

Mas all4 de educar al usuario en el uso del programa, notar que mas adelante queremos
acceder al contenido de argv[1] y argv[2]. Si no validamos primero la existencia de esos
argumentos (sea mirando argc o iterando argv hasta el centinela) no podemos acceder a ellos
con seguridad. Si el programa hubiera sido invocado sin argumentos en argv[1] tendriamos
un NULL y acceder a argv [2] seria directamente una violacién de memoria. No puede accederse
a argumentos sin validar antes que existan.

Luego hay que tomar en cuenta que, similar a la interaccién con el usuario, el usuario
ingresa cadenas de caracteres. Si necesitdiramos otros tipos deberemos hacer las conversiones
correspondientes. Ademads, al tratarse de entrada del usuario habra que validar que los valores
sean vélidos*.

4En nuestro ejemplo convertimos con atof (), pero si quisiéramos verificar que realmente se tratara de nimeros

122

X N3 O Ul N

NOTAS DE TA130 SEBASTIAN SANTISI

16.3. Comodines

Te recomendamos que juegues con este ejemplo:

argumentos.c

#include <stdio.h>

int main(int argc, char xargv[]) {
printf ("argc,=,%d\n", argc);
for(size_t i = 0; argv[i] !'= NULL; i++)
printf ("argv[%zd]l =u\"%s\"\n", i, argv[i]);
return 1;

¢Qué salida ves si ejecutds?

./argumentos hola que tal
./argumentos hola que tal
./argumentos hola\ que tal
./argumentos hola "que tal"
./argumentos hola que tal *
./argumentos hola que tal *.*

€ H P B P P

No vamos a explicar los primeros, fijate, pero vamos a profundizar en el *.

Como dijimos los argumentos los genera el sistema operativo, y no necesariamente los
genera de forma literal de lo que el usuario escribe. Algunos de ellos constituyen expresiones.

En la seccién 14.4 cuando vimos la confeccién del archivo Makefile en la etiqueta clean
escribimos rm *.0 y dijimos que eso borraba todos los c6édigos objeto. Los cédigo objeto
terminan en .o y el asterisco es un comodin que significa “cualquier cosa”, es decir, el patrén
*. o0 significa “los nombres de los archivos que tengan cualquier cosa y terminen en .0”. El
sistema operativo confecciona una lista de los archivos que validen ese patrén y se los pasa
como argumentos al programa rm en este caso.

Similar al asterisco esté el comodin 7, el mismo significa “cualquier letra”. Por ejemplo el
patrén archivo?.c va a validar contra los archivos archivol.c y archivos.c pero no contra
archivo42.c.

Si bien todas las terminales implementan estos comodines, puede haber diferencias en
cémo funcionan en Windows dado que en ese sistema operativo los nombres de los archivos
contienen extensiones y eso cambia su comportamiento. Ademads en terminales particulares hay
otros patrones mucho mds complejos que estos dos presentados aca.

podriamos haber utilizado strtof ().

123

Capitulo 17

Complejidad Computacional

17.1. Eficiencia

En la seccion 11.7 se present6 un ejemplo muy similar a este:

O 0 NI O Ul B W N

_ =
=)

/* Lee enteros de stdin hasta agotar la entrada, devuelve el
vector de enteros leidos por el nombre y la cantidad de enteros
a través de n. */
int *leer enteros(size_t *n) {

int *v = NULL;

size_t 1 = 0;

char buffer [100];

[S e e N e
= O WO 00 N1 O U = W N

while (fgets(buffer, 100, stdin) != NULL) {
int *aux = realloc(v, (i + 1) * sizeof (int));
if (aux == NULL) {
free(v);
return NULL;
+
vV = aux;
v[ii++] = atoi(buffer);
+
*n = 1i;

return v;

en el cual se lee de la entrada una cantidad desconocida n de enteros. La pregunta que queremos
hacernos es si la eficiencia de nuestra implementacién depende de 1 y en qué medida lo hace.

Antes que nada, cuando hablamos de eficiencia hablamos principalmente de dos cantidades:
Tiempo y recursos. El tiempo tendra que ver con la cantidad de operaciones que se realicen y
los recursos que consuma serd la cantidad de memoria requerida. Profundizaremos maés sobre
esto mds adelante, pero en principio no nos interesa tanto el tiempo o la cantidad de bytes
de memoria! si no cuél es su relacién con el tamafio #n del problema. Es decir, si se duplica n,
(qué pasara con los recursos?, ;serdn los mismos?, ;se duplicaran?, ;se multiplicardn por, por
ejemplo, 4?2

IDonde la cantidad de memoria podemos calcularla, pero el tiempo dependera de dénde vayamos a correr esto.
2Hagan sus apuestas.

124

NOTAS DE TA130 SEBASTIAN SANTISI

Para simplificar diremos que asignar una variable, obtener el valor de ella, hacer una
operacién aritmética, etc. son operaciones que llevan siempre el mismo tiempo. O sea, no
dependen de qué tan grande sea el ndmero que asigno, o si estoy operando dos nimeros muy
grandes, etc.

Si miramos el cédigo vamos a ver que hay una secuencia de estas operaciones sencillas,
seguidas de un ciclo que se va a ejecutar n veces. Dentro de este ciclo tenemos operaciones
sencillas con excepcién de una llamada a fgets (), una llamada a realloc() y otra a atoi().
Si el tiempo que lleva hacer todas las operaciones que estan fuera del bucle es a y el tiempo que
lleva hacer todas las operaciones que estdn dentro del bucle es b entonces el tiempo total serd
a + nb, siendo que el cédigo de b se ejecuta n veces.

Como dijimos, las operaciones de a son operaciones sencillas, declaraciones de variables,
asignaciones, un return, por lo que este tiempo si pudiéramos medirlo tardarfa una determina-
da cantidad que no depende del tamafio de n. Es decir, es un tiempo fijo, 2. Ahora deberiamos
ver si las operaciones del ciclo también son independientes del tamafio.

Tenemos la llamada a fgets (). La cantidad de operaciones que se ejecuten estard dada por
cudntos caracteres ingrese el usuario. Este nimero es un ntimero acotado, por un lado porque
no tiene sentido que ingresara ndmeros de mas de 10 digitos, dado que no podemos representar
nimeros mayores a 232, pero también porque el problema esté limitado por los 100 caracteres
de buffer[100]. Si bien cada llamada tardara un tiempo dependiente del ntimero particular
que ingrese el usuario para esa iteracion, el tiempo esta acotado y podemos simplificar que
nunca superard un maximo que no depende del tamafio del problema (como mucho depende
del tamafio de buffer, pero es fijo).

Podemos hacer un andlisis similar para la llamada a atoi(). Dependerd del largo del
niimero, pero el problema deberia suponer no més de 10 digitos y en el peor de los casos esta
acotado por los 100 caracteres del arreglo.

Nos queda la llamada a realloc(). Ya vimos el algoritmo de realloc() en la seccién 11.6:
Se realiza un malloc () del tamafio pedido y si el mismo es positivo se realiza un memcpy () del
tamafio viejo al nuevo bloque de memoria. Luego se ejecuta un free() de la memoria anterior.

En nuestro problema, en cada iteracién se ejecuta un realloc () de un vector de tamario i
en un vector de tamafio i + 1, para poder almacenar el nuevo valor. Esto se va a ejecutar con
i=0,1,2,...,n—2,n— 1. Es decir el tamafio del vector que se redimensiona no es constante en
cada una de las iteraciones, si no que a medida que progresemos en la lectura el mismo crecera
cada vez maés hasta llegar a n.

La idea que habiamos planteado de que si llamabamos b al tiempo de cada paso del ciclo
podiamos estimar el tiempo total como a + nb ya no tiene sentido, porque acabamos de descubrir
que b depende de 1, o sea es b(n). Si quisiéramos estimar algo deberiamos sumar los tiempos
de cada una de las iteraciones coni =0..n — 1.

Olvidémosnos un rato de a y b y digamos que el tiempo de las operaciones es sencillamente
1. Bueno, el primer ciclo llevara tiempo 1, mientras que el segundo tiempo 2, y asi hasta que
el dltimo ciclo llevara tiempo 7.3. El tiempo total de nuestro ciclo entonces serd 1 +2 + ...+
(n—1)+n=Y",i* ;Podemos resolver esa serie? Vamos a omitir el desarrollo pero se puede
probar que:

ii _n?+n

i=1 -
Veremos que es innecesario pero para dejar tranquilo a cualquiera que se haya emocionado
con las constantes reintroduzcamos todas las que hagan falta. Digamos que c es el tiempo de las
cosas que estdn dentro del bucle que no son el realloc() y que el realloc() tarda di, donde d

3Después podemos multiplicar esto por una constante arbitraria ¢ y listo, tendriamos el tiempo real... si nos
interesara.

4Hay un +1 segtin si miramos el tamafio viejo o el nuevo del vector, usemos estos rangos, no va a cambiar el
resultado que nos interesa.

125

17.2. NOTACION O CAPITULO 17. COMPLEJIDAD COMPUTACIONAL

es una constante e 7 el tamafio. Bueno, podemos poner todo junto el tiempo que va a tardar
nuestro problema:

2
T:a+nc+dn ;_n.

(Estos dos términos que aparecieron no son otra cosa que nb(n) que lo tuvimos que contar uno
por uno.)

Si sirviera para algo, podriamos ejecutar el algoritmo con diferentes tamafios y estimar los
valores de las constantes para una determinada computadora y predecir el tiempo que tardaria
el algoritmo (en esa misma computadora) para un tamafio # cualquiera. En principio no sirve
para nada.

Esta expresion a la que llegamos es innecesariamente complicada porque si bien responde
la pregunta que nos habiamos hecho incialmente que era “;qué pasa si duplico n?” tiene tantos
términos que no nos deja verlo de forma intuitiva. Simplifiquemos, si n es lo suficientemente
grande, los términos constantes o lineales no van a incidir mucho en el resultado y finalmente
s6lo va a pesar el término cuadratico. Es decir, podemos decir que

T~ g112.
2

Entonces, si para determinado 71 nuestro algoritmo lleva un tiempo t; si tomamos un
1y = 21y, es decir duplicamos el tamafio, nuestro algoritmo llevard un tiempo t, = 4t1, es decir
cuadruplicara el tiempo. ;Habias adivinado?

El anélisis del consumo de memoria es mucho més sencillo, al final se tendridn n unidades de
enteros en el heap. Aunque hay que notar que durante la llamada a realloc() en un momento
coexistira el vector viejo y el nuevo, por lo que se necesita momentaneamente el doble de
memoria para redimensionar.

17.2. Notacién O

Lo que presentamos hasta el momento es una introduccién muy superficial al tema de la
complejidad computacional y no profundizaremos mucho mds porque no es un tema de este
curso. Lo importante es tomar nocién de que los algoritmos se crean para ser ejecutados y que
la eficiencia de los mismos se puede cuantificar tanto tomando tiempos en la vida real como
realizando anadlisis teéricos sobre el mismo cédigo. El anélisis de los tiempos no nos interesara
en principio para vaticinar cudntos segundos, minutos u horas tardard un algoritmo si no para
comparar diferentes algoritmos de forma general.

Introduciremos ahora una forma de notacién que nos permite esto, comparar algoritmos:

Definicion: Se dice que f(x) € O(g(x)) si f(x) < mg(x) conm >0y Vx > xo.

No pretendemos que se entienda esta definicién formal sino para qué sirve. Continuando el
ejemplo anterior podemos decir que

n?+n

> € (’?(nz),

a+nc+d

y de hecho fue la simplificacién que hicimos oportunamente.
¢Qué nos pide la definicién?, nos pide que busquemos una funcién que acote siempre por
encima a mi funcién, pero sélo a partir de un # mayor a un ng arbitrario. Esa fue la simplificacién

que hicimos cuando dijimos “si n es lo suficientemente grande”, a partir de determinado punto

2 5

mn? serd siempre mas grande que a + nc + d”3 fijando un m positivo arbitrario.

STanto m como ny arbitrarios pero fijos, si existen entonces puedo aplicar la simplificacién.

126

X N O U W

NOTAS DE TA130 SEBASTIAN SANTISI

El objetivo de la notaciéon O es descartar tanto los términos de menor orden como todas las
constantes que tengan que ver con el tiempo concreto. Nuestro ejemplo anterior se simplifica
en decir que T = O(n?). Ahi debemos leer que T escala de manera cuadratica con respecto
al tamario del problema n. No importa cudnto tiempo tarda, importa de qué manera va a
empeorar cuando agrandemos el problema. Si pudiéramos medir un determinado tiempo para
un determinado 7 entonces podriamos estimar cuédnto llevaria para 100 veces mas elementos.

Esta es la métrica que utilizaremos para clasificar algoritmos, por ejemplo un algoritmo
O(1) es un algoritmo que siempre tarda lo mismo, sin importar el tamafio del problema, un
algoritmo O(n) escala de forma lineal, habra algoritmos O(nlogn) que escalaran de forma
“cuasilineal”, y asi. Independientemente de si un algoritmo lineal tarde 10 segundos y otro
algoritmo también lineal tarde 50 segundos, para la notacién O ambos serdan O(n) e idénticos,
porque lo que nos interesa es el comportamiento al variar el tamafio de la entrada, no si uno es
mas veloz que el otro.

Mas alla de la comparacién con otros algoritmos, ;la complejidad nos puede aportar mas
informaciéon? Supongamos que corremos nuestro algoritmo de lectura de vectores de enteros
con 1000 elementos y nos lleva 1 segundo. No importa mucho el nimero, pero digamos que
es un segundo. Lo interesante seria ver que si el vector fuera 10 veces mas grande llevaria
100 veces ese tiempo, o sea poco mds de un minuto. Y si fuera 100 veces mas grande llevaria
10000 veces, lo cual seria casi 3 horas. Y si fuera 1000 veces mds grande llevaria 10 dias. Y con
10000 veces maés llevaria 3 afios. Paremos ahi, si leer 1000 enteros nos lleva 1 segundo, leer 10
millones de enteros nos llevaria 3 afios. La Reptiblica Argentina tiene cerca de 50 millones de
habitantes, sin importar si 1000 elementos llevan 1 segundo o 1 milisegundo ;podriamos usar
este algoritmo para leer los datos de un censo?®, ses un algoritmo que funciona bien?

El orden de complejidad no sélo nos permitird comparar algoritmos, en algunos casos incluso
ante la ausencia de otro algoritmo nos permitird descartar un algoritmo para determinadas
tareas.

17.3. Busqueda binaria

Supongamos el problema de dado un arreglo de elementos saber si un elemento particular
estd o no en el arreglo y cudl es su posicién de estar. Esto es una busqueda.
Podriamos implementar esta funcién de este modo:

/* Busca el elemento en un vector de n elementos.
Devuelve la posicidén del elemento o n de no encontrarlo. */
size_t buscar (int vector[], size_ t n, int elemento) {
for(size t i = 0; 1 < n; i++)
if (vector [i] == elemento)
return 1i;
return n;

De forma secuencial comparamos elemento con cada uno de los elementos vector[i] y si
lo encontramos devolvemos su posicion.

Si bien la cantidad de operaciones dependera de elemento y su posicién en vector de forma
genérica podemos decir que el algoritmo es O(n), el tiempo escalara lineal con respecto a la
cantidad n de elementos. En principio que el algoritmo sea lineal lo hace mejor que el algoritmo
de lectura de enteros cuadraticos que analizamos en la seccién anterior, ahora bien, ;lineal es lo
mejor que podemos obtener?

Los censos se realizan cada 10 afios, sumar las respuestas del censo de EEUU de 1880 llevé més de 10 afios y
motivé la adopcién de tarjetas perforadas y sumadoras para el de 1890, este hecho marca el inicio de la historia de IBM
y del desarrollo de computadoras para resolver problemas.

127

O 0 NI O Ul B W N

I T T W SOy
X N3 O Ul WD~ O

17.3. BUSQUEDA BINARIA CAPITULO 17. COMPLEJIDAD COMPUTACIONAL

Siguiendo con los ejemplos civicos, supongamos que te llaman para ser presidente de mesa
en unas elecciones donde en tu mesa hay un padrén de 1000 electores ordenados de forma
alfabética. ;Por cada persona que vaya a votar empezarias a fijarte si es el primero de la lista,
si no lo es fijarte si es el segundo de la lista, y asi hasta encontrarlo en la posicién 8612”7 Hoy
en dia con la digitalidad se perdieron los indices, pero hasta hace algunas décadas en todas
las viviendas habia guias telefénicas con los nombres y teléfonos de todos los abonados, o
diccionarios y enciclopedias con todas las palabras del idioma ordenadas. Nadie empezaria a
buscar por el comienzo para encontrar un Rodriguez.

La mejor forma de encontrar algo es poder descartar rdpidamente dénde no lo voy a
encontrar. Volviendo al ejemplo del padrén, ;qué pasa si lo abro exactamente en el medio y
me fijo qué elector es el que estd ahi? Si justo se da la chance en mil de que sea justo el que
estd viniendo a votar el problema se termind, pero lo méas probable es que no sea ese el caso.
(Comparar el nombre de la mitad del padrén con el elector que quiero buscar me da alguna
informacién adicional?

Bueno, si el padrén estd ordenado alfabéticamente mirar el elector del medio me indica
inmediatamente si me pasé o si todavia no llegué. Esta sencilla pregunta descarta la mitad
exacta del padrén. Si ya me pasé, mi elector tiene que estar en la primera mitad, si todavia
no llegué tiene que estar en la segunda mitad. ;Y cémo contintio?, sencillamente puedo hacer
lo mismo con la mitad restante, y la mitad de la mitad y la mitad de la mitad hasta que o
encuentre a mi elector o me quede sin padrén para partir al medio y no lo haya encontrado.

El algoritmo sera algo asi como:

/* Busca el elemento en un vector de n elementos ordenados.
Devuelve la posicioén del elemento o n de no encontrarlo. x/
size_t busqueda_binaria (int vector[], size_t n, int elemento) {

size_t prim = 0;

size t ult = n - 1;

while (prim <= ult) A
size_t medio = (prim + ult) / 2;
if (vector[medio] == elemento)

return medio;

if (vector [medio] > elemento)
ult = medio - 1;

else
prim = medio + 1;

return n;

La porcién del vector que debemos mirar es la que estd entre prim y ult. Ahora bien, sélo
miramos el elemento que estd en el medio entre los dos, y en base a eso reajustamos la porcién
seguin qué encontremos.

Es importante notar que la documentacién ahora dice “vector de n elementos ordenados”, eso
estd imponiendo una precondicién muy fuerte: El vector si o s tiene que estar ordenado. Si no
el algoritmo no funcionarfa.

¢Y cudntas operaciones realiza nuestro algoritmo? Sabemos que en cada paso se descarta la
mitad de los elementos, ;y cudntas veces itera entonces?

No se trata de tener empatia con la computadora, pero a veces ponerse en el lugar de lo que pretendemos que
resuelva nuestro algoritmo y pensar qué hariamos nosotros si realmente tuviéramos que hacer todas esas operaciones
es un buen camino para encontrar mejores soluciones.

128

O 0 N O U s W

e
W N = O

NOTAS DE TA130 SEBASTIAN SANTISI

Para realizar las cuentas de forma sencilla vamos a suponer que 1 = 2F, es decir que no
tenemos una cantidad arbitraria de elementos sino, convenientemente, una potencia de 2. Esto
nos va a permitir simplificar las cuentas y vamos a llegar a un resultado que es valido también
cuando esto no se cumpla.

Si hacemos esa asuncién en el paso 0 de nuestro algoritmo tenemos 2 elementos. Si
descartamos la mitad en cada paso en el paso 1 del algoritmo tendremos % = 2k=18 En el paso
2 tendremos entonces 2¢~2 elementos y asi seguiremos hasta el paso k. En el paso k tendremos
2k=k = 20 = 1 elementos, es decir, habremos partido tantas veces al medio nuestro vector que lo
agotamos. Nuestro algoritmo entonces realiza k pasos, pero sabemos que n = 2F = k = log, 1.

Entonces podemos concluir que nuestro algoritmo es O(logn),’ es decir, es logaritmico con
respecto al tamarfio de la entrada.

(Esto es bueno? Supongamos que tenemos un padrén no de 1000 electores si no de los 50
millones de argentinos: log, (50000000) = 26, en apenas 26 iteraciones puedo saber si alguien
estd o no en el padrén.!

17.3.1. bsearch()

Similar a la funcién gsort () que presentamos en la seccion 8.11.1 la biblioteca provee una
implementacién genérica de la bisqueda binaria

void #*bsearch(const void *key, const void *base, size_t nmemb,
— size_t size, int (xcompar) (const void *, const void *);

donde los pardmetros son los mismos que en gsort () y se suma key, la clave que buscamos. La
funcién devuelve un puntero a la ocurrencia del elemento en el vector o NULL de no encontrarlo.

17.4. Lectura del vector
Empezamos la seccién hablando del algoritmo de lectura del vector que resulté cuadratico.

(Podemos mejorarlo? Si, podemos mejorarlo.
Supongamos el cédigo

/* Lee enteros de stdin hasta agotar la entrada, devuelve el
vector de enteros leidos por el nombre y la cantidad de enteros
a través de n. */
int *leer_enteros(size_t *n) {

int *v = malloc (1l * sizeof (int));

if (v == NULL) return NULL;

size_t memoria_pedida = 1;
size t 1 = 0;

char buffer [100];
while (fgets(buffer, 100, stdin) != NULL) {
if (i == memoria_pedida) {

80tra vez 41, porque nuestro algoritmo descarta el elemento del medio, pero no cambia el resultado.

?Omitimos la base del logaritmo porque un cambio de base es multiplicar por una constante y en notacién O no nos
importan las constantes.

10M4s atin, si estamos asumiendo que nuestra computadora tiene punteros de 64 bits, significa que no puede haber
nunca un vector de més de 2%* elementos, entonces si pudiéramos tener una computadora con 18 exabytes (2* bytes)
de memoria RAM y el mayor vector posible que podriamos cargar ahi la biisqueda binaria atin no iteraria mas de 64
veces.

129

14

15
16
17
18
19
20
21
22
23
24
25
26

O = LW N =

17.4. LECTURA DEL VECTOR CAPITULO 17. COMPLEJIDAD COMPUTACIONAL

int *aux = realloc(v, 2 * memoria_pedida * sizeof (int)
—)
if (aux == NULL) {
free(v);
return NULL;
}
vV = aux;
memoria_pedida *= 2;
}
v[i++] = atoi(buffer);
+
*n = 1i;

return v;

empezamos pidiendo un memoria de un tamafio arbitrario pequefio, 1. Ahora ya no pedimos
memoria en todas las iteraciones, ahora pedimos memoria sélo cuando agotamos la cantidad
que ya pedimos. El quid del algoritmo estd en cudnta memoria adicional pedimos cuando
nos quedamos sin memoria. Si pidiéramos una suma fija adicional cada vez pediremos esa
suma veces memoria pero al analizar la complejidad esto no cambiard el orden. Ahora bien, en
nuestra solucién estamos haciendo crecer la memoria de forma exponencial'l. Intuitivamente,
si cada vez pedimos el doble de memoria, vamos a converger rapidamente al valor de 7.

(Cuantas veces pedimos memoria en nuestro algoritmo? La primera vez pedimos 1, la
segunda 2, tercera 4, 8, 16 y asi hasta superar 7. Si mirdramos esta serie al revés veriamos que,
otra vez, la cantidad de pedidos esta relacionada con cudntas veces podemos dividir n por
dos, es decir, tenemos una cantidad logaritmica de veces que pedimos memoria. Esta es una
reduccién muy importante con respecto a pedir de forma lineal.

La cantidad de memoria movida por realloc() entonces serd la sumatoria de cada uno de
los tamarios de redimensién Zf»‘zl 21 = 2(2F — 1), donde k es la cantidad de pasos log, 1 por lo
tanto el resultado es 2(n — 1). Es decir, termina siendo O(n). El algoritmo es lineal en cantidad
de operaciones.

En cuanto a memoria podria pasar que justo después de redimensionar se alcance el tamafio
de la entrada y entonces estemos ocupando el doble de memoria de lo necesario. Si bien estamos
descartanto constantes, no deja de ser el doble que el algoritmo anterior.

Podemos emparchar nuestro algoritmo reemplazando la linea del return v; por

int *aux = realloc(v, *n * sizeof (int));

if (aux == NULL)
// No vamos a descartar todo si ya habiamos podido leer.
return v;

return aux;

redimensionando al tamafio final.

Notar también que asi como en el algoritmo cuadratico necesitibamos momentaneamente
el doble de la memoria para hacer el realloc() acéd necesitamos el triple cuando tengamos un
vector de n y pidamos 2n.

Si en vez de tomar 2 como factor de crecimiento tomamos un niimero menor el derroche de
memoria se reduce sin afectar el orden de complejidad que seguird siendo lineal.

11E] factor es 2, la duplicamos, pero obtendriamos el mismo resultado si usdramos un ntimero més conservador.

130

Capitulo 18

Contenedores

18.1. Concepto

En el capitulo 13 presentamos a los tipos de datos abstractos, donde delegamos en un tipo
encapsulado la implementacién de determinadas funcionalidades. Dentro de los TDAs que
podemos implementar para estructurar nuestros programas hay un conjunto que representan
una categoria en si mismo: Los contenedores.

Llamamos contenedor a los TDAs que sirven para almacenar objetos y recuperarlos después.
Por ejemplo, en el caso més sencillo de tipos (concretos) que ya manejamos un arreglo de enteros
permite almacenar objetos de tipo entero en una determinada posicién y luego recuperar ese
valor entero més tarde.

En el caso de TDAs la idea es que Alan provea toda la infraestructura necesaria para
almacenar los objetos que Barbara necesite guardar. Volviendo al ejemplo anterior, tal vez
Barbara quiere guardar enteros en un arreglo, pero a su vez necesita que ese arreglo sea
dindmico, que al crecer lo haga de forma eficiente (ver la seccién 17.4), o que los elementos
se inserten de forma ordenada y que por lo tanto se puedan encontrar de forma eficiente (ver
la seccion 17.3), etc. Tal vez ya le estamos pidiendo tanto al vector que queramos en realidad
implementar un TDA que gestione todas esas operaciones. Desde el punto de vista de Barbara
s6lo nos interesard al TDA pedirle que almacene determinado valor y que nos lo devuelva si lo
necesitamos o nos permita consultar si el mismo estd o no en la instancia del TDA.

Notar que en el ejemplo anterior Alan implementa un TDA vector dindmico de enteros.
Es decir, si bien Alan implementa primitivas de forma opaca para que después Barbara las
consuma, Alan conoce perfectamente los elementos que Béarbara va a almacenar: enteros.
Cuando tenemos ese caso hablamos de un contenedor para determinado tipo.

Ahora bien sabemos que la idea de Alan y Barbara como dos personajes que interacttian
entre si es un cuentito que nos contamos. En la vida real tal vez Alan implementé una biblioteca
afios antes y a Barbara le resulta ttil y la utiliza sin pedirle ninguna funcionalidad a Alan. Ahora
bien, ;qué pasa si Barbara en vez de necesitar almacenar un tipo conocido como un entero
necesitara almacenar un tipo particular como por ejemplo un TDA cualquiera? Si queremos que
realmente Alan pueda implementar contenedores que sirvan a futuro, tendremos que proveer
algtin mecanismo para que Alan pueda gestionar los objetos que Barbara necesita guardar sin
conocer el tipo de esos objetos. En ese caso hablaremos de un contenedor genérico.

18.2. Listas

Empezaremos presentando una interfaz sencilla, la de un tipo que llamaremos “lista”.
Esta lista tendré las siguientes primitivas:

131

T = W N =

18.3. IMPLEMENTACION CON UN ARREGLO DINAMICOCAPITULO 18. CONTENEDORES

crear_vacia() — L: Creard una instancia de la lista y nos la devolvera como un objeto L.
asignar(L, i, x): En la posicién i de L guarda el valor x.

obtener(L, i) — x: Nos devuelve x, el valor que estaba en la posicién i de L.
agregar_al final(L, x): Inserta el valor x al final de la lista L.

insertar(L, i, x): Inserta el valor x en la posicién i de L. Ahora bien, todos los elementos
que estaban de esa posicién en adelante se tienen que desplazar una posicion a la derecha,
estamos insertando un valor, no asignando como en una de las primitivas anteriores.

eliminar(L, i): Elimina el valor i de la lista L. Ahora bien, no puede quedar un agujero en la
lista, por lo que todos los elementos posteriores a i tienen que desplazarse una posicién a
la izquierda.

Si bien podemos agregarle otras primitivas a nuestra lista, como por ejemplo, que nos diga si
la misma estd vacia, o cudl es su longitud, o si un elemento se encuentra o no, etc. de momento
empezaremos con esta interfaz.

Si bien Alan tiene libertad de accién en cémo implementar esta interfaz serfa deseable
que todas las operaciones de la misma se pudieran resolver en tiempo constante, es decir,
en O(1). Tal vez esto se pueda, o tal vez no, y tal vez para Barbara sea mas importante que
determinada operacién sea eficiente y otras no tanto, dependiendo de qué necesita en su
aplicacion, y esta relacién de compromiso entre qué puede ofrecer Alan y qué necesita Barbara
va a motivar que haya muchas maneras difentes de implementar esta interfaz. Incluso puede
haber immplementaciones particulares donde alguna de estas operaciones diréctamente no
tengan sentido y se omitan.

18.3. Implementaciéon con un arreglo dindmico

Si quisiéramos implementar la lista de enteros una propuesta vélida podria ser:

struct lista_enteros {

int *v; // E1l vector de n enteros
size_t n; // La cantidad de elementos del vector
// Invariante: Si n == 0 <==> v == NULL

+;

No vamos a implementar las primitivas pero deberiamos poder ver que la primitiva
crear_vacia() deberia poder resolverse en tiempo constante O(1). Lo mismo corre para
las primitivas asignar() y obtener (), en ambos casos pueden resolverse accediendo a un
elemento de un vector, lo cual no deja de ser una suma y desreferenciacién de punteros (eso si,
primero validemos que el indice provisto sea valido).

¢Qué pasa con agregar_al _final()? Si la lista antes de agregar un elemento tiene una
determinada cantidad de elementos, luego de agregarlo tendrd un elemento més. En la repre-
sentacion interna que elegimos v tiene exactamente n elementos, por lo que estamos obligados
a hacer un realloc() lo cual implica hacer una copia de los elementos previos del vector a
memoria nueva. Nuestra implementacion va a forzar que esta primitiva se ejecute en O(n).

¢(Esta es la tinica implmenetacién posible? No, por ejemplo, podriamos implementar el tipo
de esta forma:

struct lista_enteros {
int *v; // El1 vector de n enteros.
size_t n; // La cantidad de elementos ocupados en el
— vector.

132

O 0 N3 O Ul

NOTAS DE TA130 SEBASTIAN SANTISI

size_t pedidos; // La cantidad de memoria pedida en v.
/* Invariantes:

n <= pedidos

pedidos > O
*/

Con una implementacién como esta podemos disociar el pedido de memoria de la necesidad
de agrandar la cantidad de elementos del vector. Por ejemplo, si inicidramos pidiendo memoria
para 100 elementos en el constructor, las primeras 100 veces que Bérbara inserte un elemento
nuevo al final ya tendriamos resuelta la memoria. Recién cuando Barbara inserte el elemento
101 pagaremos una penalidad por la redimensiéon de memoria.

Siendo que Alan generalmente precede a Barbara, lo més probable es que no tenga ninguna
idea de si Barbara va a insertar pocos o muchos elementos en su lista. En el capitulo previo
hablamos largo y tendido de las diferentes estrategias para leer un vector de longitud desco-
nocida. La estrategia que Alan implemente cuando n == pedidos va a incidir en el orden de
complejidad de agregar_al_final().

En este curso no tenemos las herramientas matemaéticas para fundamentar lo que vamos
a enunciar, pero lo que concluimos en el capitulo anterior de crecer la memoria de forma
exponencial puede extrapolarse a este caso. Podemos decir que si Alan hace crecer a pedidos
de forma exponencial cada vez que se quede sin espacio entonces Barbara podra agregar n
elementos en tiempo O(n). Hasta acd no dijimos nada no fundamentado, demostramos esta
afirmacioén en el capitulo anterior. Ahora bien, si Barbara puede agregar n elementos en tiempo
O(n) entonces podemos decir que agregar un elemento lo hace en O(1). Esta tltima afirmacién
deberia hacerte ruido.

Si volvemos a la idea de que Alan arranca pidiendo memoria para 100 elementos esta
claro que las primeras 100 inserciones de Barbara se dan en O(1). Ahora bien, la siguiente
insercion tiene que hacer un realloc() sobre un vector de tamafio 100, por lo tanto serd O(n).
Si duplicamos memoria! entonces por 100 inserciones mds no haremos nada y a la vez 200
tendremos que hacer una redimensién que costara 200, pero por 200 inserciones no pagaremos
costo y asi. Bien, en esta sucesiéon de muchas veces O(1) y pocas veces O(n) donde las veces
lineales cada vez se espacian maés en el tiempo se puede demostrar que cada insercion es de
tiempo amortizado O(1).

(Qué significa lo de amortizado?, que si miramos desde afuera podemos decir que en
promedio todo es O(1), incluso cuando sabemos que cada una determinada cantidad de
pedidos Barbara va a disparar un pedido de redimensién que lleva tiempo lineal. El concepto
de amortizacién viene de la Economia, podriamos decir que cada una de las primeras 100 veces
que Barbara inserta esta ahorrando a futuro para pagar todo junto en la centésima insercién. Esa
centésima insercion le cobra por lo que no pagé en las 100 anteriores. No vamos a profundizar
en el tema, podriamos habernos quedado con la cuenta inicial que hicimos, si n inserciones
llevan tiempo lineal, entonces una sola lleva tiempo constante; de hecho intuitivamente deberia
verse eso, pero es mas complejo y en realidad se dice que lleva tiempo amortizado a constante.

Retomando toda esta disgresién, entonces también la primitiva de agregar_al_final()
puede implementarse en O(1) (amortizado).

Si abordamos las dos primitivas restantes, insertar () y eliminar (), veremos que no hay
manera de implementarlas mejor que O(n) con nuestra implementacion. El acto de insertar o
eliminar en vector implica desplazar una posicién todos los elementos restantes del vector. Es
decir, tendremos que recorrer los elementos, eso serd siempre lineal.

Entonces, resumiendo, con nuestro TDA lista implementado sobre un arreglo podemos
obtener complejidades O(1) para todas las primitivas salvo insertar() y eliminar() que

IRecordemos que podemos tener crecimiento exponencial multiplicando por otro ntimero que no sea 2, pero 2 nos
queda cémodo para hacer las cuentas.

133

B W N =

B W N -

18.4. LISTA GENERICA CAPITULO 18. CONTENEDORES

seran O(n).

18.4. Lista genérica

S5i tenemos la implementacién de la lista de enteros que hicimos en la subseccién anterior
podemos reemplazar int por cualquier tipo de preferencia y tendremos una lista que funciona
para cualquier tipo de datos. Ahora bien, si necesitamos la lista para mdaltiples tipos de datos
tendremos que tener muchas versiones que son, basicamente, el mismo cédigo copiado y
pegado, y ademads, necesitamos tener el c6digo fuente disponible para hacer ese cambio.

Como dijimos al comienzo del capitulo, muchas veces queremos que Alan sea capaz de
implementar un contenedor que sea agndstico al tipo de datos que Barbara va a guardar en éL

Cada lenguaje tiene sus propuestas para poder desacoplar el contenedor del tipo que se
guarda en él y en C lo més usual es hacer contenedores que almacenen elementos de tipo
void *. Como ya sabemos, el tipo void * permite guardar cualquier tipo de puntero, y nada
maés que punteros, por lo que la propuesta para implementar contenedores genéricos implica
que Barbara debe guardar en él punteros, o sea, nuestro contenedor genérico no servird para
guardar enteros y flotantes sino tipos mds complejos.

Si bien no se sefialé de forma explicita cuando explicamos TDAs (capitulo 13) y modulari-
zacién (capitulo 14) fue evidente de que ambas cosas funcionan instanciando los objetos del
tipo en el heap. Es decir, es natural manejar a los TDAs a través de punteros, incluso llegando
al punto de que Barbara desconoce qué hay almacenado en la memoria que apunta. Entonces,
si bien plantear los contenedores genéricos como receptores de punteros a void nos limita el
almacenamiento de tipos bésicos?, es un tipo razonable porque nos permite almacenar cualquier
TDA que construyamos.

Entonces nuestra lista genérica podria implementarse

struct lista {
void *x*xv;
size_t n, pedidos;

3

con el mismo disefio que explicamos en la subseccién anterior y donde v ahora es un arreglo
dindmico de void *.

En principio si tenemos implementada la lista con enteros podemos reemplazar las ocurren-
cias de int por void * (donde sea necesario) y tenemos implementada nuestra lista genérica.
Ahora bien van a surgir detalles que en la implementacién de enteros no tenia sentido conside-
rar.

Independientemente de las primitivas que nos interesaban para la lista, sabemos que todo
TDA tiene un destructor. Veamos el cédigo del destructor de la lista de enteros:

void lista_enteros _destruir (lista_enteros_t x*1) {
free(l->v); // Libero la memoria de los elementos.
free(l); // Libero la memoria de la estructura.

}

El TDA, como corresponde libera su memoria asociada. Tanto el vector 1->v como la estructura
1 es memoria pedida y gestionada por Alan. El vector contiene todos los valores que Barbara
almacené. Barbara dijo “almacena un 5 en la posicién 3” y Alan almacené ese 5. Liberar la
memoria asociada al vector elimina esa copia del 5 en la memoria gestionada por Alan.

Si vamos al caso genérico:

2Si realmente quisiéramos guardar enteros podriamos poner esos enteros en el heap y almacenar int *, llegado el
caso.

134

= W N =

P N O U= WD

= W N =

NOTAS DE TA130 SEBASTIAN SANTISI

void lista_destruir(lista_t *1) {
free(1->v);
free(1l);

t

si 1->v contiene a los elementos de Barbara y esos elementos son punteros liberar el vector
no libera la memoria asociada a esos elementos, solamente libera el vector en el cual Alan
guardaba esas referencias.

Ahora bien, ;cémo liberamos esos elementos?, podriamos pensar que llamar a free () para
cada uno de ellos sea una buena idea, pero, ;realmente los objetos de Barbara se liberan de este
modo? Podemos tomarnos un segundo para mirar nuestro propio destructor, ni siquiera las
listas se destruyen con un tnico free().

Supongamos que sepamos como se liberan los elementos, ;Barbara quiere liberarlos al
destruir el vector? Por ejemplo, Barbara tiene una lista con todos los alumnos del curso. De
forma temporal se arma una lista con los alumnos que aprobaron el primer parcial. Barbara
ahora tiene dos listas donde los objetos de una son un subconjunto de los objetos de la otra. Si
elimina la lista de alumnos que aprobaron el primer parcial, ;quiere perder esos alumnos de su
curso? Veamos que incluso aunque Alan supiera cémo lidiar con la memoria de Barbara no
puede él decidir si destruye los objetos o no.

La conclusién de los dltimos dos parrafos es que s6lo Barbara sabe cémo liberar sus objetos
y si desea hacerlo. Esa no es responsabilidad de Alan, Alan sélo los almacena, pero no se
preocupa de su contenido.

¢Como hacemos entonces? Una solucion seria exigirle a Barbara que antes de destruir la lista
se preocupe por eliminar sus elementos, si es que hace falta. Esta solucién si bien tiene sentido
por lo que ya discutimos es incémoda. La otra solucién seria que Béarbara le indique a Alan qué
hacer con los elementos, sin que por eso Alan tenga que conocerlos. La forma de delegar este
tipo de cosas en C es mediante punteros a funciones. Barbara le va a pasar a Alan el puntero a
una funcién que sepa qué hacer con la memoria de los datos. Esa funcién pertenece al universo
de Barbara, por lo que va a conocer cémo lidiar con ellos. Alan se va a limitar simplemente a
llamarla para cada uno de los elementos almacenados:

void lista_destruir(lista_t *1, void (*destruir_elemento) (void x*))
— A
if (destruir_elemento != NULL)
for(size t i = 0; 1 < 1->n; i++)
destruir_elemento (1->v[i]);

free(l->v);
free(l);
+

La firma del destructor de elementos es void f(void *) recibe un elemento de tipo void *y

lo destruye, los destructores nunca devuelven nada dado que en C no hay forma de recuperarse

si hubiera un error de memoria. Notar que si Barbara no quisiera eliminar los elementos de

la memoria (porque ya los tiene en otro lado, porque son estaticos, etc.) puede invocar al

destructor pasando NULL como funcién de destruccidn, esto le ahorraria a Barbara tener que

construirse una funcién que no haga nada si quisiera omitir la iberacién de los elementos.
Del lado de Barbara, por ejemplo:

void liberar cadena(void *s) {
// s es una cadena
free(s);

135

O 0 N o G

10
11
12
13
14
15
16
17
18
19
20
21

NGB W N =

18.5. BUSCAR UN ELEMENTO CAPITULO 18. CONTENEDORES

int main() {
lista_t *cadenas = lista_crear vacia(); // Validar!

char aux[MAX _CADENA];

while (fgets (aux, MAX_CADENA, stdin) != NULL) {
char *cadena = malloc(strlen(aux) + 1); // Validar!
strcpy (cadena, aux);
lista_agregar_al_final (cadenas, cadena); // Validar!
s
//

lista_destruir (cadenas, liberar_cadena);

return O;

En primer lugar si la lista es genérica ;como sabe Barbara qué elementos tiene? Bueno, esto
es sencillo, lo que es genérico es la implementacién de Alan. Para Barbara la lista no es genérica,
es una lista de cadenas. ;Por qué es de cadenas? Sencillamente porque Barbara guardé cadenas.
No importa la implementacién de Alan, si Barbara guarda elementos de diferente tipo adentro
de un contenedor lo que va a guardar van a ser punteros, cuando recupere los elementos va a
recuperar punteros y es imposible dada una direccién de memoria saber a qué tipo de elemento
pertenece esa memoria. Si Barbara necesita una lista para guardar cadenas guardard cadenas y
recuperaré cadenas. En el ejemplo incluso la variable donde almacena la lista se llama cadenas.

Si la lista es de cadenas, cada elemento de la misma es una cadena y entonces debe liberarse
con la funcién liberar_cadenas(). Notar que Bérbara tiene un char *, se lo pasa a Alan en la
llamada a lista_agregar_al_final() que lo recibe como un void * y asi lo almacena, pero
cuando invoca a liberar_cadena() esta funcién sabe que ese void * que recibi es en realidad
un char * y puede gestionarlo de ese modo.

La realidad es que siendo que liberar_cadena() se limita a llamar a free() y tiene la
misma firma que free(), tranquilamente Barbara podria haber invocado lista_destruir(
< cadenas, free) y hubiera sido lo mismo.?

18.5. Buscar un elemento
Supongamos que Barbara quiere saber si un elemento se encuentra o no dentro de la lista y

recuperarlo.
Si la interfaz fuera:

void *1lista_buscar (const lista_t *1, void *elem) {
for(size t 1 = 0; 1 < 1->n; i++)
if (1->v[i] elem)
return elem;
return NULL;

;estarfamos realmente buscando?

3Y si la firma no fuera la misma consultar lo que ya se discutié sobre wrappers en la seccién 8.11.1.

136

N U = W N

NN U N -

(o BN B N I

NOTAS DE TA130 SEBASTIAN SANTISI

Pensemos un segundo el dltimo ejemplo de la lista con cadenas. Imaginemos que el usuario
ingres6 por stdin un listado de nombres y queremos saber si un determinado nombre est4 o
no

if (lista_buscar (cadenas, "Juan\n") != NULL) // Esta

Esta funcién nunca va a encontrar a la cadena, porque la cadena "Juan\n" vive en data mientras
que las cadenas de la lista viven en el heap y estamos comparando punteros y no contenido.
A estas alturas sabemos que para comparar cadenas tenemos que hacerlo por caracteres (o
llamando a strcmp()).

Entonces, como Alan desconoce el tipo de los datos, es Barbara quien tiene que proveer la
funcién de comparacion.

En la seccién 8.11.1 ya vimos que las funciones de comparacién en C tienen una interfaz
estdndar: Reciben los dos elementos y devueven un entero, si ese entero vale 0 es porque los
dos elementos son iguales. Si es negativo es porque el primer elemento es menor al segundo y
positivo en caso contrario (si, para sorpresa de nadie exactamente la interfaz de strcmp()).

Entonces Barbara debe proveer la funcién de btsqueda

void *lista_buscar (const lista_t *1, void *elem, int (*xcomparar) (
< const void *, const void *)) {
for(size t 1 = 0; 1 < 1->n; i++)
if (comparar (1->v[i], elem) == 0)
return 1->v[i];
return NULL;
}

Mas alla de la funcién de btsqueda notar que cambiamos la devolucién. En la primera
implementaciéon devolviamos elem en la segunda devolvemos 1->v[i]. ;Es indistinto devolver
uno o el otro? ;5Si elem es el elemento que buscamos, en qué se diferencia de 1->v[i]?

Aca tenemos que pensar que el elemento que Barbara esta buscando es el de la lista.
El elemento que pasa como pardmetro a la funcién es solo algo que sirve para disparar la
igualdad en la busqueda. Ejemplifiquemos, imaginemos que Bérbara tiene una estructura
alumno definida como:

struct alumno {
int padron;
char nombre [MAX_CADENA]J;
char apellido [MAX_CADENA];
enum carrera carrera;
// ... y un montdén de cosas méas

+s

y generd una lista alumnos que contiene a todos los alumnos de la facultad.
Luego en nuestro ejemplo Barbara quiere recuperar la informacién del alumno con padrén
100000. Entonces puede hacer algo ast:

int comparar_por_padron(const void *a, const void x*b) {

const struct alumno *aa = a;
const struct alumno *ab = b;
return aa->padron - ab->padron;
}
//

struct alumno busqueda = {.padron = 100000};

137

N

O 00 N O U s W

10

18.6. INTERFAZ DE LISTA CAPITULO 18. CONTENEDORES

struct alumno *encontrado = lista_buscar (alumnos, &busqueda,
— comparar_por_padron) ;

El alumno con el que Barbara busca es apenas una cdscara vacia que contiene un padrén, el
alumno que Bérbara tiene en la lista, y quiere recuperar tiene toda la informacién completa.
Por esto no es indistinto devolver elem 0 1->v[i], el elemento proporcionado no tiene ningtin
valor més que servir para encontrar al elemento real.

18.6. Interfaz de lista

Omitiendo la biisqueda una posible interfaz para la lista genérica podria ser la siguiente:

lista_t *xlista_crear vacia();
void lista_destruir(lista_t *1, void (*destruir_elemento) (void *))
—

bool lista_asignar(lista_t *1, size_t i, void *x);
void *lista_obtener (const lista_t x*1, size_ t 1i);
size_t lista_longitud(const lista_t *1);

bool lista_agregar_al_final(lista_t *1, void *x);
bool lista_insertar (lista_t *1, size_ t i, void *x);
void *lista _eliminar (lista_t *1, size t 1i);

Notar que todas las primitivas que pueden fallar devuelven bool, devolveran true en caso de
poder realizar la accién y false en caso contrario. La primitiva lista_eliminar () retira de la
lista el elemento en la posicién i y lo devuelve. jPor qué lo devuelve?, porque si tuviera que
removerlo de la lista y no lo devolviera tendria que eliminarlo y otra vez necesitariamos que
Bérbara nos dijera como hacerlo. Es mas sencillo devolverle el elemento a Barbara y que ella se
responsabilice por su memoria.

Se agreg6 ademads una primitiva para obtener la longitud n de la lista.

138

= W N =

Capitulo 19

Listas enlazadas

19.1. La lista enlazada

La lista enlazada es un contenedor donde cada uno de los datos se almacena dentro de un
nodo. A su vez cada uno de los nodos tiene una referencia al nodo siguiente de la lista, como si
se tratara de los vagones de un tren.

Por ejemplo, para una lista enlazada de enteros podriamos definir el nodo de la siguiente
forma:

struct nodo {
int dato; // El1 dato que vamos a almacenar
struct nodo *sig; // La referencia al nodo siguiente

}s

Por ejemplo, si tuviéramos los nodos:

struct nodo a = {1, NULL};
struct nodo b {2, NULL}Z};
struct nodo c {3, NULLZ};

podriamos engancharlos de este modo:

a.sig = &b;
b.sig = &c;

y si miramos la lista a partir de a veriamos que la misma es una sucesién de 3 nodos con los
datos 1, 2, 3 en ese orden.

Volviendo a la declaracién de la estructura, en el lenguaje de programacién C no puede
anidarse una estructura dentro de si misma, porque harfa falta memoria infinita para eso,
pero es perfectamente vélido incluir dentro de una estructura una referencia a s{ misma. Esta
referencia, al ser un puntero, tiene un tamafio acotado por el tamafio de los punteros en la
plataforma.

Volviendo a la definicién de la lista, si cada nodo contiene una referencia a un siguiente
nodo y este a su vez contiene una referencia al siguiente, estariamos ante una sucesién que no
termina més. Ampliando entonces en una lista los nodos contienen una referencia al siguiente
nodo si es que existe, y una referencia nula en caso de que no haya ningtin nodo a continuacién.

Notar que asi como el nodo a define una lista con los elementos 1, 2 y 3, el nodo b también
define una lista con los elementos 2 y 3, y que esto es vélido para cualquier nodo. La lista tiene
una estructura recursiva definida en términos de si misma.

Mas alla de que el cédigo anterior sirve de ejemplo para entender cémo se vinculan varios
nodos entre si, si queremos tener una cantidad indefinida de nodos no vamos a tener variables

139

O 0 N O Ul B WD~

[S o S S G S G Y
G = W N = O

= W N -

1
2

19.2. IMPLEMENTACION COMO TDA CAPITULO 19. LISTAS ENLAZADAS

para cada uno de ellos. Tiene sentido que los nodos vivan en el heap y referenciarlos desde el
primer nodo que representa la lista:

struct nodo *crear_nodo (int dato, struct nodo *sig) {

struct nodo *n = malloc(sizeof (struct nodo));
if (n == NULL) return NULL;

n->dato = dato;

n->sig = sig;

return n;

b

//

struct nodo *primero = crear_nodo (1, NULL);
primero->sig = crear_nodo (2, NULL);
primero->sig->sig = crear_nodo (3, NULL);

Genera la misma lista que habfamos generado en el ejemplo anterior. Si estds pensando que la
expresion primero->sig->sig es poco elegante, estds pensando bien. No sélo es una expresion
fea, ademas si quisiéramos insertar 10 nodos en la lista no parariamos de agregar ->sig a la
misma.

Por como se estructuran las listas, es mucho mds sencillo agregar los nodos al principio que
al final como hicimos en los dos ejemplos previos. Podriamos hacer:

struct nodo *aux = crear_nodo (3, NULL);
aux = crear_nodo (2, aux);

aux = crear_nodo (1, aux);

struct nodo *primero = aux;

y tendriamos exactamente la misma lista que antes. Este es un cédigo que podriamos repetir
tantas veces como queramos de forma iterativa.

Como dijimos en la introduccién, la lista enlazada es un contenedor cuya unidad de
almacenamiento es el nodo, donde cada nodo contiene un dato y una referencia al siguiente
nodo. Esta definicién es la definicién matemaética abstracta de la estructura de datos.

19.2. Implementacién como TDA

Ahora bien, yendo a la implementacién, si Alan quisiera encapsular la lista enlazada como
un TDA en C se va a encontrar que definir a la lista en funcién de su primer nodo, como
hicimos en los ejemplos hasta el momento, va a implicar que cualquier operacién que modifique
el primer nodo (sea insertar o eliminar un elemento) haga que la referencia que Barbara posee
tenga que cambiar. Si bien es posible hacer una implementacién donde Barbara tenga una
referencia al primer nodo, la misma requiere que Alan reciba punteros al puntero al nodo (o
sea, dobles punteros) para poder modificar esta referencia, o que una lista vacia, es decir que
no tiene datos, tampoco deberfa tener nodos por lo que se representarfa como un NULL.

Para implementar la lista enlazada como un TDA, nos va a quedar mucho mas cémodo si
Alan le presenta a Barbara una estructura que funcione como un wrapper del primer nodo de la
lista:

struct lista {
struct nodo *prim; // Primer nodo de la lista

140

@ N O U W=

X N O U W=

g = W N =

NOTAS DE TA130 SEBASTIAN SANTISI

+s

typedef struct lista lista_t;

Este tipo lista_t sera la cara visible de la lista enlazada ante Barbara. Los nodos serdn un
detalle de implementacién que sélo conocerd Alan. No perdamos de vista que lo tnico que le
interesa a Barbara son sus datos, esa es la idea de contenedor. El resto es problema de Alan.

Y si, a partir de ahora vamos a llamar “lista” a la lista enlazada, no confundir con la interfaz
genérica de lista que presentamos en el capitulo anterior. Si en algiin momento necesitdramos
referirnos a la lista genérica lo aclarariamos, por omisién cuando hablemos de listas seran listas
enlazadas.

Teniendo esa representacién interna el constructor de la lista queda:

lista_t *lista_crear () {
lista_t *1 = malloc(sizeof(lista_t));
if (1 == NULL) return NULL;

1->prim = NULL;

return 1;

b

Notar que de esta forma la estructura lista_t permite que el primer elemento de la lista mute
sin por eso modificar la referencia externa de Barbara. Del mismo modo, Bérbara tiene una
referencia no nula incluso cuando la lista esta vacia.

Encapsulemos ahora la operacién de insertar al comienzo como primitiva:

bool lista_insertar_al_principio(lista_t *1, int dato) {

struct nodo *n = crear_nodo(dato, l->prim);
if(n == NULL) return false;
1->prim = n;

return true;

by

La funcién crear_nodo() que ya presentamos sera una funcién auxiliar privada de Alan'.

19.3. Recorrer la lista

A diferencia de los arreglos, donde podemos acceder de forma sencilla a cualquier elemento
con una operacién de punteros, en las listas enlazadas no hay manera de acceder a un nodo
que no sea recorriendo de forma transversal la lista desde el comienzo.

Por ejemplo, supongamos que Alan quiera imprimir los datos de la lista?:

struct nodo *actual = 1->prim;
while (actual != NULL) {
printf ("%d\n", actual->dato);
actual = actual->sig;

1i. e. su declaracion estara predecedida por static y s6lo aparecerd en el .c (ver la seccién 14.5).

2Esto no serd una primitiva, pero es un ejemplo sencillo para ver la dindmica.

141

O 00 NI O U B W N

[y
o

N

O 00 N O U s W

10
11

12
13
14
15

19.3. RECORRER LA LISTA CAPITULO 19. LISTAS ENLAZADAS

Con variaciones esta sera la plantilla que utilizaremos para recorrer los elementos de la lista.
En cada paso de la iteracién habrd un nodo que serd el de interés, utilizaremos para él el
nombre actual. La eleccién del nombre de la variable nos va a servir para entender mejor el
algoritmo, se recomienda que el nodo con el que trabajaremos se llame asi y los demés sean
nombrados relativos a €1, es decir anterior, siguiente, etc. Si el nodo actual fuera NULL serd
porque alcanzamos el final de la lista y ya no habrd nodos por recorrer. Mientras actual exista
podremos manipular 1->dato. El nodo de la siguiente iteracién sera el siguiente del actual, o
sea actual->sig.
Utiizando esta plantilla podemos implementar el destructor de la lista:

void lista_destruir(lista_t *1) {
struct nodo *actual = 1->prim;
while (actual != NULL) A
struct nodo *siguiente = actual->sig;
free(actual) ;
actual = siguiente;

free(1l);

Hay ocasiones en las que necesitamos recorrer la lista pero no queremos llegar hasta el final
si no, por ejemplo, encontrar el dltimo nodo. Por ejemplo, si quisiéramos insertar un dato nuevo
al final, deberiamos insertar un nodo luego del tdltimo nodo, por lo que tendriamos que enlazar
ultimo->sig = nuevo. Este es un caso en el que no nos sirve la plantilla anterior como viene si
no que tendremos que modificarla.

Volviendo al algoritmo si para insertar un nodo al final de la lista necesitamos encontrar el
altimo nodo de la misma, entonces esa condicion tiene una restriccion muy fuerte adicional:
Tiene que haber un dltimo nodo, para lo cual tiene que haber nodos. Es decir, no podemos
encontrar el dltimo nodo en una lista vacia, dado que una lista vacfa no tiene ningtin nodo.

La plantilla de recorrido que presentamos previamente funciona en cualquier lista. Cuando
empecemos a modificarla tal vez empiecen a aparecer casos particulares que habra que con-
templar. En el ejemplo que estamos dando, insertar un nodo “al final” de una lista vacia es lo
mismo que insertarlo al principio.

Entonces:

bool lista_insertar_al final (lista_t *1, int dato) {

struct nodo *nuevo = crear_nodo (dato, NULL); // Estara al
— final => ->sig = NULL

if (nuevo == NULL) return false;

if (1->prim == NULL) {
l->prim = nuevo;
return true;

+

struct nodo *actual = l->prim;

// Cuando este bucle termine, actual sera el Ultimo nodo de la
— lista.

while (actual->sig != NULL)
actual = actual->sig;
actual->sig = nuevo;

142

16
17
18

O 0 N O Ul s WD

—_ =
=)

T = W N =

NOTAS DE TA130 SEBASTIAN SANTISI

return true;

b

¢Qué hubiera pasado si no hubiéramos abordado el caso particular de la lista vacia previo a
empezar la iteracién? Notar que la condicién de corte del while incluye la expresién actual->
— sig, donde en la primera iteracién actual es 1->prim. O sea la primera vez que iteremos
estaremos evaluando 1->prim->sig. Esta expresién sélo tiene sentido si 1->prim != NULL
— dado que si no estariamos haciendo algo asi como NULL->sig lo cual romperia nuestro
programa. Entonces si bien el analisis que hicimos previamente nos habia indicado que habia
un caso particular que abordar si la lista es vacia, también deberia ser algo evidente analizando
el cédigo. Siempre que tengamos que acceder a miembros de punteros a estructuras tiene
que estar garantizado que dichos punteros no sean nulos. Si podrian llegar a serlo entonces
tendremos un caso particular. En el caso de las listas enlazadas los casos particulares siempre
ocurrirdn en los extremos mientras que podremos resolver los casos generales con iteraciones
genéricas.

19.4. Eliminando nodos

Como acabamos de decir, generalmente cuando pensamos en listas nos interesan parti-
cularmente los nodos de los extremos o genéricamente el resto de la lista. Es por eso que
implementamos primitivas para insertar al comienzo o al final, y del mismo modo si vamos a
pensar en eliminar nodos nos interesaréa el primero, el dltimo, o alguno genérico del medio.

Empecemos por el principio:

bool lista_eliminar_primero(lista_t *1) {
if (1->prim == NULL)
return false;

struct nodo *primero = l->prim;
l1->prim = primero->sig;

free(primero) ;

return true;

by

Otra vez, sélo podremos eliminar nodos si la lista posee al menos un nodo.

Dejamos como tarea la implementacion de la primitiva de eliminar el dltimo.

Implementemos ahora una primitiva que elimine un nodo cualquiera. Lo importante de
observar es que un nodo pertenece a una lista porque el nodo anterior lo referencia. Es decir
para eliminar un nodo de una lista en realidad habrd que modificar el nodo anterior. Y es
importante que cuando tenemos hilos de pensamiento como estos le prestemos atencion a estos
detalles, si tenemos que modificar el nodo anterior entonces el algoritmo que estamos pensando
requiere que exista un nodo anterior. Otra vez, eliminar el primer nodo de una lista sera un
caso particular: La primitiva que ya implementamos.

Implementemos una primitiva que elimine la primera ocurrencia de un determinado dato:

bool lista_eliminar (lista_t *1, int dato) {

if (1->prim == NULL) return false;
if (1->prim->dato == dato) {
struct nodo *a_borrar = 1l->prim;

143

O 0 N O

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

O 0 NI O Ul B W N

_ =
_= O

19.4. ELIMINANDO NODOS CAPITULO 19. LISTAS ENLAZADAS

1->prim = 1->prim->sig;
free(a_borrar) ;
return true;

// Ya sabemos que el primer nodo no es el que tenemos que
— borrar.

struct nodo *anterior = 1l->prim;
while (anterior->sig != NULL) {
struct nodo *actual = anterior->sig;
if (actual->dato == dato) {
// Tenemos que borrar a actual
anterior->sig = actual->sig;

free(actual) ;
return true;

¥

anterior = actual;

return false;

}

Vamos a insistir por tercera vez en algo, si bien cuando analizamos el anterior no dijimos “la
lista vacfa es un caso particular” si no que sélo identificamos como caso particular si habia que
eliminar el primero, para identificar si hay que borrar el primero tuvimos que comprobar el
valor de 1->prim->dato. Lo sefialamos porque es importante, si necesitamos acceder al dato
del primer elemento entonces requerimos que haya un primer elemento, entonces que la lista
sea vacia es un caso particular. Si bien en este apunte los c6digos se ven como algo terminado
la programacioén es un proceso iterativo donde uno va partiendo de ideas generales y atacando
los detalles. Seria perfectamente plausible que si fuéramos a implementar este algoritmo
primero implementemos la iteracién que representa el caso genérico. Luego identifiquemos
que esa iteraciéon no puede abordar si el nodo a borrar es el primero de la lista y que luego
identifiquemos que necesitamos que la lista no esté vacia. Ese es un hilo de pensamiento mds
natural que los ejemplos cerrados que estamos presentando aca. Ahora bien, insistimos con esto
porque un algoritmo que no tome en cuenta todos y cada uno de los casos particulares estd mal
y no va a funcionar. Deben ser tenidos en cuenta todos los casos particulares que correspondan
para el problema.

Como es habitual hay multiples maneras de implementar lo mismo. Podrfamos demorar la
evaluacion del caso particular implementando una iteracién sobre el nodo actual en vez del
anterior:

bool lista_eliminar (lista_t *1, int dato) {
struct nodo *actual = 1l->prim;
sctuct nodo *anterior = NULL;

while (actual != NULL) {
if (actual->dato == dato) {
// Tenemos que borrar a actual
if (anterior == NULL)
// actual es el primero de la lista

l1->prim = actual->sig;
else

144

12
13
14
15
16
17
18
19
20
21
22

B W N =

O = W N =

NOTAS DE TA130 SEBASTIAN SANTISI

// actual es un nodo del medio
anterior->sig = actual->sig;

free (actual) ;
return true;

by

actual = actual->sig;

return false;

b

Notar como diferentes algoritmos pueden tener diferentes casos particulares para la misma
operacién. Lo importante no es que programes la versién mas elegante, sencilla o con menos
casos particulares. Lo importante es que para la versiéon que hayas elegido seas capaz de
identificar esas condiciones de borde que si no abordas la implementacién no funcionara.

Se deja como ejercicio implementar la primitiva que borre todas y cada una de las ocurrencias
de un dato®.

Mas adelante veremos cémo se pueden eliminar los casos particulares que aparecen en la
manipulacién del primer nodo de una lista versus los nodos del medio.

19.5. Listas genéricas

Si bien implementamos previamente el destructor o la eliminacién de un dato de Ia lista
enlazada no perdamos de vista que hasta ahora venimos ejemplificando sobre una lista de
enteros. Si tuviéramos una lista genérica el tipo de datos serd void * por lo tanto la declaracién
del nodo sera:

struct nodo {
void x*xdato;
struct nodo *sig;

¥

Todas las primitivas se modificaran en consecuencia, pero nos importa particularmente sefalar
las primitivas que manipulan datos.

En los ejemplos anteriores hubo primitivas donde a Alan no le import6 el contenido del dato,
por ejemplo, para insertarlo al comienzo o al final. Por el otro lado hubo primitivas donde Alan
si mir¢ el contenido, por ejemplo para eliminar un nodo dado el dato (if (actual->dato ==
— dato).Y, mds importante, hubo primitivas donde Alan no hizo nada de forma explicita con
el dato pero si los datos hubieran sido void * deberia haberles dado un tratamiento particular,
esos son los casos que requieren maés atencion al ser implicitos.

Por ejemplo, ya abordamos para el TDA lista no enlazada genérico que para destruir el
TDA en caso de que haya elementos Barbara tiene que indicar como se destruyen. Entonces el
destructor de la lista enlazada genérica deberd ser:

void lista_destruir(lista_t *1, void (*destruir_dato) (void *)) {
struct nodo *actual = 1->prim;
while (actual != NULL) A
struct nodo *siguiente = actual;

3Si vamos a hablar de casos particulares notar que si el dato aparece miiltiples veces al comienzo de la lista, después
de eliminarlo por primera vez tal vez volvemos a estar en el mismo caso particular.

145

O 0 N O

10
11
12
13
14

O 00 NI O Ul B W N

e
N = O

1

19.6. CASOS PARTICULARES CAPITULO 19. LISTAS ENLAZADAS

if (destruir_dato !'= NULL)
destruir_dato (actual->dato) ;
free(actual) ;

actual = siguiente;

free(1l);

En el caso de, por ejemplo, la primitiva de eliminar el primer dato:

void *lista_eliminar_ primero(lista_t *1) {
if (1->prim == NULL)
return NULL;

struct nodo *primero = l->prim;
void *dato = primero->dato;

l1->prim = primero->sig;
free(primero);

return dato;

by

Similar a lo que habiamos discutido en la lista no enlazada, si bien podemos pedirle a Barbara
que nos pase una funciéon de destruccion, siendo que estamos ante un tinico elemento lo mas
sencillo es devolvérselo y delegarle el problema a ella.

De forma analoga, en la primitiva de eliminar dado un determinado dato tendremos que
indicar cémo identificar a ese dato:

void *lista_eliminar(lista_t *1, comnst void #*dato, int (*
<~ comparar_dato) (const void *, const void *));

donde la funcién comparar_dato es una funcién de comparacién como ya vimos en la sec-
cién 18.5. Entonces la identificacion de la ocurrencia del dato en el nodo serd algo como
if (! comparar_dato(actual->dato, dato)).

Insistiendo con cosas que deberian ser evidentes a esta altura del curso: ;La funcién anterior
es la que elimina la primera aparicién del dato o borra todas? Deberias poder razonar la
respuesta.

Por comodidad retomaremos los ejemplos con la lista de enteros y no la lista genérica.

19.6. Casos particulares

Vamos a presentar una técnica para eliminar los casos particulares que tenemos con la
manipulacién del primer nodo versus la manipulacién de los nodos interiores de la lista. Desde
ya se aclara que esta es una técnica avanzada de punteros y que tal vez simplifique los algoritmos
pero complejiza el entendimiento del cédigo. Se presenta por un lado por completitud y por el
otro porque es una buena aplicacién del tema de punteros.

Empecemos identificando por qué ocurre el caso particular. Por ejemplo, en la versién
simplificada de la eliminacién del nodo tenfamos el siguiente cédigo:

if (anterior == NULL)

146

= W N -

NN U QN -

NOTAS DE TA130 SEBASTIAN SANTISI

l1->prim = actual->sig;
else
anterior->sig = actual->sig;

Estamor partiendo en dos condiciones pero lo que hacemos en las lineas 2 y 4 es practicamente
idéntico. ;Qué es lo que cambia?

La diferencia fundamental entre ambas lineas es que en la primera estamos modificando
algo de tipo lista_t y en la otra algo de tipo struct nodo. Del mismo modo lista_t tiene un
miembro prim mientras que struct nodo tiene un miembro sig. El hecho de que sean estruc-
turas diferentes con miembros que no coincidan hace que ambos cédigos sean irreconciliables y
que si o si haya que abordar el problema como dos casos diferentes desde la implementacion.

Ahora bien, si hacemos foco sobre los miembros en cuestién tanto lista_t->prim como
struct nodo->sig son ambos de tipo struct nodo*. Es decir, ambas estructuras son diferentes,
tienen miembros que se llaman distinto, pero en ambos casos lo que modificamos es una
referencia a struct nodo (lo cual deberia ser evidente, en ambos casos la asignacién es =
> actual->sig, o sea, estamos asignando lo mismo, ergo lo que esta a izquierda del igual es
del mismo tipo).

¢Qué pasa si en vez de operar con las estructuras operamos directamente con los miembros?
Es decir apuntamos directamente a prim en el caso de las listas y sig en el caso de los nodos. Si
ambos miembros son de tipo struct nodo * para apuntar a ellos necesitaremos un nivel mds
de punteros, pero lo importante es que:

struct nodo **p;

P &l->prim;

p = &actual->sig;

es un cédigo valido y que el puntero p puede apuntar indistintamente al primero de una lista o
al siguiente de un nodo.
Si lo anterior es valido, entonces es valido también:

*p = actual->sig;

Si p estuviera inicializado con el primero de la lista tendriamos *(&1->prim)= actual->sig,
donde * cancela a &, y un reemplazo analoga si fuera un puntero a siguiente de nodo, las mismas
expresiones de las lineas 2 y 4 que queriamos escribir de forma uniforme.

Entonces, para entrar en calor, implementemos la iteracién de Alan imprimiendo nodos en
su lista de enteros con dobles punteros:

struct nodo **p = &l->prim;
while (*p != NULL) {
struct nodo *actual = *p;

printf ("%d\n", actual->dato);
p = &actual->sig;

by

Si bien podriamos acceder al dato utilizando (*p)->dato) es mds claro si bajamos el nivel de
punteros dentro del cuerpo de la iteracién.

Teniendo la plantilla en la cabeza ahora podemos implementar la primitiva de eliminacién
de la primera ocurrencia de un dato:

bool lista_eliminar(lista_t *1, int dato) {
struct nodo **p = &l->prim;

147

O 0 N3 O Ul

10
11
12
13
14

19.7. EFICIENCIA CAPITULO 19. LISTAS ENLAZADAS

while (xp != NULL) {
struct nodo *actual = *p;
if (actual ->dato == dato) {
*p = actual->sig;

free(actual) ;

return true;
}
p = &actual->sig;
}

return false;

Este seria el c6digo de la eliminacién eliminando los casos particulares. Si seguimos el cédigo
veremos que en la expresién *p = actual->sig el puntero p tiene uno de dos valores posibles,
0 &1->prim si es la primera iteracion o el &actual->sig de la tltima iteracién (o sea, el que era
actual ya es anterior porque estamos en el siguiente ciclo) lo cual se expande a lo mismo que
habiamos escrito cuando desplegamos el c6digo en dos casos particulares en la implementacién
previa a esta.

Insistimos en lo que dijimos al comienzo. Esta técnica es una aplicacién de punteros intere-
sante, que nos permite subsanar el problema que tenfamos al tener que modificar estructuras de
tipo diferente y la estamos presentando en este apunte como un ejemplo avanzado de punteros.
No recomendamos particularmente aplicar esta técnica a los algoritmos de listas, el nivel previo
de implementacién es més que suficiente aunque implique lidiar con casos particulares.

19.7. Eficiencia

Retomemos las preguntas del capitulo anterior sobre eficiencia en la interfaz genérica de
listas, ;qué podemos concluir al respecto de las listas enlazadas?

La caracteristica principal de la lista enlazada es que al ser, justamente, una estructura
enlazada siempre debemos recorrerla para descubrir sus nodos. El tinico elemento que esta
disponible de forma inmediata es el primer elemento de la lista.

Por otro lado, al ser los nodos estructuras independientes entre si agregar nodos de forma
intermedia no implica realizar los movimientos de memoria que tendriamos que hacer al operar
sobre arreglos. Insertar o eliminar un nodo en cualquier posicién sélo implica mover referencias
de lugar. Eso si, primero hay que encontrar qué nodo es el que queremos modificar y, a menos
que estemos manipulando el primer nodo, para eso no tenemos otra alternativa que recorrer la
lista.

Entonces en prinicipio serdn O(1) las operaciones de creacién de la lista vacia y tanto la
insercién como eliminacién del primer elemento. Ahora bien, la insercién, eliminacién e incluso
acceso al dato de cualquier otro elemento o incluso conocer la longitud de la lista tendran
complejidad O(n) porque implicaran recorrer la lista primero.

¢Se pueden mejorar estos érdenes? Si, guardando informacién redundante. ;Qué queremos
decir con redundante? Queremos decir que no vamos a aportar informacién adicional a lo que
ya tenfamos con la lista definida por la posiciéon del primer elemento, pero que podemos tener
cosas precalculadas que nos ahorren tiempo. Por ejemplo, si nos interesara obtener la longitud
de la lista en forma O(1) podriamos tener un miembro en lista_t que lleve esa cuenta. Ahora
bien serd parte de la invariante de representacion que ese miembro lleve la cuenta real de nodos,
por lo tanto serd condicién de todas las primitivas mantener ese nimero actualizado. Almacenar
informacién redundante implica realizar mas trabajo en muchos lugares, dependiendo del caso
eso podra ser o no una ganancia.

En una lista enlazada nunca podremos tener referencias a todos los nodos, si hiciéramos eso

148

B W N - g &~ W N -

NN U s N

O 00 N O U B W N

NOTAS DE TA130 SEBASTIAN SANTISI

perderia el sentido tener una lista enlazada porque necesitariamos un arreglo para guardar esas
referencias, pero puede ayudar tener una referencia al tltimo nodo.
Si incluyéramos las dos cosas que mencionamos podriamos tener una estructura:

struct lista A
struct nodo *prim;
struct nodo *ult;
size_t longitud;

}s

Tener una referencia al tltimo harfa O(1) la operacion de insertar al final. Ambos agregados a
la estructura pueden mantenerse actualizados sin empeorar la complejidad de las primitivas ya
desarrolladas, por lo que son pura ganancia.

Dicho esto, imaginemos que tuviéramos la primitiva que devuelve el i-ésimo elemento de
la lista int lista_obtener(const lista_t *1, size_t i); como nos proponia la interfaz
genérica de listas. Si esa primitiva existiera Barbara podria estar tentada de operar:

for(size_t 1 = 0; i < lista_longitud(l); i++) {
int dato = lista_obtener (1, 1i);
printf ("%d\n", dato);

Esto no es buena idea. Si lista obtener tiene complejidad O(n) y estamos haciendo eso para
cada uno de los elementos de la lista, entonces iterar una lista tendra complejidad O(n?).
Para iterar una lista necesitamos recorrer nodos, y dado que los nodos son parte de la
implementacién interna de Alan, sélo Alan puede iterarla. Una solucién que puede ofrecer
Alan es recorrer la lista y llamar a alguna funcién de Barbara con cada dato, por ejemplo:

void lista_recorrer (const lista_t *1, void (xvisitar) (int)) {
struct nodo *actual = 1->prim;
while (actual != NULL) {
visitar (actual ->dato) ;
actual = actual->sig;

De esta forma Béarbara puede delegar en Alan realizar alguna operacién sobre cada uno de sus
datos.

Esta funcién que presentamos es un poco limitada por lo que vamos a complejizarla un
poco. Vamos a reimplementarla no para la lista de enteros si no para la lista genérica y vamos a
agregarle mas complejidad a la funcién que nos manda Bérbara y es mas facil mostrar el cédigo
que explicar lo que esperamos:

bool lista_recorrer (const lista_t *1, bool (xvisitar)(void =*dato,

— void *extra), void *extra) {
struct nodo *actual = l->prim;
while (actual != NULL) {

if (! visitar (actual->dato, extra))

return false;

actual = actual->sig;

+

return true;

149

O 0 NI O Ul B W N

RN NN NN R 2B 1o s m s s s
IO & ONR, S OO Ok @ R~ o

1

19.7. EFICIENCIA CAPITULO 19. LISTAS ENLAZADAS

Introdujimos dos cosas nuevas (y una tercera de forma implicita). Por un lado la funcién
visitar() devuelve ahora un booleano, Barbara puede interrumpir la iteracién donde quiera
simplemente devolviendo false. Por el otro agregamos un parametro adicional en la funcién.
Ese parametro puede ser cualquier cosa que Barbara necesite, Alan como lo recibe lo pasa. Si
Barbara no lo necesitara podria ser NULL pero puede ser un entero, un TDA, una estructura,
cualquier cosa que le dé contexto a su funcién de visita. Dijimos que habia algo implicito que
no estaba en la funcién anterior y es que en este caso, al tratarse el dato de un void * Barbara
puede modificarlo y se modificara en la lista, cosa que no pasaba en la lista de enteros. Notar,
finalmente, que la funcién devuelve un booleano que indica si la iteracién se complet6 o no.

Ejemplifiquemos un poco el uso de esta funcién por parte de Barbara. Por ejemplo, si
Barbara quisiera volcar su lista en un archivo:

bool escribir_en archivo(void *dato, void *extra) {
char *s = dato;
FILE *xf = extra;

if (fprintf (£, "%s\n", s) < 0)
return false;

return true;

int main(void) {
lista_t *1 = lista_crear();
lista_insertar_al_principio("estéas?");
lista_insertar_al_principio("coémo"
lista_insertar_al_principio("amigo");
lista_insertar_al_principio("Hola");

// Lista: {"Hola", "amigo", "coémo", "estas?"}

FILE *f = fopen("archivo.txt", "wt");
if (! lista recorrer(l, escribir_en _archivo, f))

fprintf (stderr, "Huboyun_ errorescribiendo_ el archivo\n");
fclose (f);

lista_destruir (1, NULL);
return O;

}

¢Cémo sabe la funcién escribir_en_archivo() que su primer pardmetro es una cadena y su
segundo pardmetro un archivo? Lo sabe porque es una responsabilidad de Barbara. Si Barbara
guardd en su lista genérica cadenas entonces cada dato serd una cadena, del mismo modo, si
Barbara pasa como puntero extra un archivo la funcién se llamara con ese dato. Barbara tiene
que pasar una funcién consistente con sus datos. Del mismo modo, al destruir la lista Barbara
sabe que sus cadenas viven en la memoria data (ver seccién 8.6) por lo tanto son estaticas y no
deben ser liberadas, de ahi el NULL como pardmetro.

S5i no tuviéramos el pardmetro extra y quisiéramos implementar esta misma funcionalidad
tendrifamos o que abrir y cerrar el archivo en cada iteracién, o utilizar variables globales o
similar, y no podriamos abortar la iteracién si hubiera una falla.

Otro ejemplo, misma lista pero Barbara quiere imprimir los primeros 3 elementos de la lista:

bool imprimir_n_primeros(void xdato, void *extra) {

150

O 00 NI O U o W N

I T e T = T e =
S O 0 N O U W NN = O

N

N U1 B W

NOTAS DE TA130 SEBASTIAN SANTISI

char *s = dato;
int *n = extra;

if (! *n) return false;

printf ("%s\n", s);

(*¥n) -—;
return true;
+
int main(void) {
//
int n = 3;

lista_recorrer(l, imprimir_n_primeros, &n);

//
}

Como se dijo extra puede ser cualquier cosa. En ambos ejemplos fue una tnica variable, pero
si Barbara necesitara pasar multiples cosas podria crear una estructura ad hoc que contenga
todo el contexto que necesite.

19.8. Iteradores

Como ya dijimos en el mundo de los contenedores a Barbara lo tinico que le interesa
son los elementos que quiere persistir mientras que corre por cuenta de Alan el cémo los
almacena. Un contenedor internamente puede almacenar los elementos como considere y la
operacion de iteracion no siempre es evidente. Asimismo dado que son datos de Barbara a
Béarbara puede interesarle iterar sobre ellos y realizar acciones y no siempre una primitiva de
recorrido como la que presentamos en la seccion anterior es suficiente. Por esto es que existe
una categoria de TDAs que son los iteradores. Implementar un iterador para el contenedor serd
una responsabilidad de Alan, para permitirnos recorrer los elementos del contenedor de forma
sencilla.

El iterador, que es un un TDA en si mismo, forma parte del TDA del contenedor. Es decir,
tiene permitido el acceso a la representacién interna del contenedor. Y tiene sentido que sea
asi, justamente estamos proveyendo de un iterador porque con la encapsulacién como TDA no
podriamos realizar una iteracién eficiente.

La versiéon mads sencilla de iterador nos deberia permitir recorrer el contenedor con la
estructura de un for de C, definido en términos de inicializacién, incremento y final:

iterador_t xiterador;

for(iterador = iterador_crear (contenedor); ! iterador_termino (
— iterador); iterador_siguiente(iterador)) {
void #*dato = iterador_actual (iterador);
//

}

iterador destruir (iterador) ;

Podriamos implementar este iterador de forma muy sencilla:

151

O 0 N O Ul s WD -

W W RN NN NNDNDNDNNDNR 2 2 = s 2 2 2
= O O 0 N O U B WD P O WV 00NN Ul NN~ O

19.8. ITERADORES CAPITULO 19. LISTAS ENLAZADAS

struct lista_iterador {
struct nodo *actual;

+s
typedef strcut lista_iterador lista_iterador_t;

lista_iterador_t *lista_iterador_crear (const lista_t *1) {

lista_iterador_t *it = malloc(sizeof(lista_iterador_t));
if (it == NULL) return NULL;
it->actual = 1->prim;

return it;

b

void lista_ iterador destruir (lista_iterador_t *xit) {
free(it);

+

bool lista_iterador_termino(const lista_iterador_t *it) {
return it->actual == NULL;

t

bool lista_iterador_siguiente(lista_iterador_t *it) A
it->actual = it->actual->sig;
return it->actual !'= NULL;

void *lista_iterador_actual (const lista_iterador_t *it) {
return it->actual->dato;

Esta es la funcionalidad bésica del iterador. Este iterador sirve, obviamente, para iterar. Este
iterador no modifica los elementos de la lista que itera.

También es posible extender la funcionalidad de un iterador para que le permita a Barbara
eliminar el elemento actual o insertar un elemento previo al actual (y poder seguir recorriendo
la lista después de realizar esas operaciones).

La interfaz del mismo serfa:

// Elimina el dato actual de la lista y lo devuelve. El iterador
<> pasa a apuntar al siguiente en la lista.
void *lista_iterador_eliminar(lista_iterador_t *it);

// Inserta un dato previo al dato acutal. El iterador permanece
~— apuntando al actual.
bool lista_iterador_insertar (lista_iterador_t *it, void *dato) ;

Para implementar estas primitivas hay que tener dominio sobre la lista, porque las ope-
raciones de modificacién al comienzo de la misma necesitan acceso a 1->prim. Ademads para
eliminar el dato actual o insertar un nodo en la posicion previa hay que tener acceso al nodo
anterior.

Se deja al alumno la implementacién de este iterador de lista enlazada con estas operaciones,
pero hay dos implementaciones posibles. O guardando en el iterador el 1ista_t original y el

152

NOTAS DE TA130 SEBASTIAN SANTISI

nodo de la iteracién pasada, o implementando un iterador que posea tinicamente un doble
puntero al miembro del actual, como se vio en la seccién 19.6.

En el mundo de los contenedores los iteradores son la forma de proveer una recorrida por
los elementos sin importar como estén estructurados en memoria. En muchos lenguajes de
programacion la interfaz que tienen los iteradores estd totalmente especificada por el lenguaje
y todos los contenedores se recorren con las mismas primitivas. Incluso muchos lenguajes de
programacién implementan una estructura de control llamada foreach que permite recorrer cada
elemento de un contenedor sin utilizar indices.

153

Capitulo 20

Otras estructuras enlazadas

20.1. Pilas

Saliéndonos de los contenedores de tipo lista, nos interesa abordar dos tipos de contenedores
que se utilizan mucho en la modelizacién y resolucién de problemas. El primero de ellos es la
pila.

La pila es un tipo de contenedor donde se almacenan elementos de tal forma de que los
mismos se recuperan en el orden inverso en el que se ingresaron. La particularidad de la pila
es que so6lo podemos ver el tltimo elemento almacenado. Pensar en que tenemos un mazo de
cartas donde apilamos! una carta sobre otra sobre otra. Si miramos el pilén veremos sélo la
altima que agregamos y si la retiramos la antetltima y asi.

La interfaz de la pila se define de la siguiente manera:

crear_vacia() — P: Crea una pila vacia y nos la devuelve como un objeto P.
es_vacia(P) — bool: Devuelve true sila pila P estad vacia.

apilar(P, x): Apila el elemento x en el tope de la pila P.

desapilar(P) — x: Desapila el elemento x del tope de la pila P y lo devuelve.
ver_tope(P) — x: Devuelve el elemento x del tope de la pila P (pero no lo desapila).

Notar que la interfaz de pilas no provee ninguna forma de conocer la longitud de una pila,
sélo si quedan elementos en ella 0 no. Tampoco hay forma de iterar los elementos, en la pila
s6lo importa el elemento del tope.

Por completitud en inglés la pila se llama stack, la operacién de apilado se llama push,
la de desapilado pop y la de ver tope peek. No es casualidad que llamemos stack al espacio
de la memoria donde viven las variables locales de las funciones. Esta zona de la memoria
implementa una pila, apildndose variables cuando entramos a una funcién y desapildndose
cuando retornamos de la misma. Obviamente al terminar una funcién recuperamos el espacio
de la dltima funcién llamada previa a ella.

Se dice que la pila es una estructura de tipo LIFO, “last in, first out”, el dltimo dato que entra
es el primero que sale.

Al igual que en la interfaz de lista, queremos implementar todas las operaciones de la pila
tal que sean O(1) cada una de ellas.

1Es dificil definir una pila sin utilizar palabras que remiten a pilas, por fuera de la ciencia de datos es una estructura
cotidiana.

154

NOTAS DE TA130 SEBASTIAN SANTISI

20.1.1. Pila sobre un arreglo

Es posible implementar la pila sobre un arreglo dindmico, de tal manera que la operacién
de apilar sea la operacién de agregar al final.

El tope de la pila estara siempre al final del arreglo.

Las operaciones de desapilado consistirdn en devolver el tltimo elemento del arreglo.

Por la dindmica en la que se dan las operaciones LIFO es facil ver que todas las funciones
que pide la interfaz son amigables con arreglos obteniendo la complejidad O(1) deseada.

20.1.2. Pila sobre una estructura enlazada

Es posible implementar la pila sobre una estructura enlazada tipo lista. En este caso dado
que la pila interacttia con el tope tiene sentido que el tope sea el primer elemento de la lista.

Entonces, las operaciones de apilado serdan una insercién al principio mientras que las
operaciones de desapilado serdn operaciones de borrar el primero.

Al igual que con arreglos es evidente ver que todas estas operaciones serdn O(1).

20.2. Colas

El otro contenedor que nos interesa abordar son las colas. En las colas los elementos se
almacenan de tal manera que cuando retiro elementos voy a retirar los que hayan entrado
primero. Pensemos, por ejemplo, en la fila de un supermercado. Cada cliente va llegando y se
pone al final de la fila. Por el otro lado el cajero (o los cajeros) atienden al cliente que est4 al
frente de la fila.

La interfaz de la pila se define de la siguiente manera:

crear_vacia() — C: Crea una cola vacia y nos la devuelve como un objeto C.
es_vacia(C) — bool: Devuelve true sila cola C esta vacia.

encolar(C, x): Encola el elemento x en el tope de la cola C.

desencolar(C) — x: Desencola el elemento x del frente de la cola C y lo devuelve.
ver_frente(C) — x: Devuelve el elemento x del tope de la cola C (pero no lo desencola).

En inglés a la cola se la denomina queue, la operacién de apilado se llama enqueue, la de
desapilado dequeue y ver el frente puede ser front o peek.

La cola se considera una estructura de tipo FIFO, “first in, first out”, el primero que llega es
el primero que se va. Se utiliza principalmente para vincular pedidos que llegan con sistemas
que pueden atender consultas limitadas.

20.2.1. Cola sobre un arreglo

La implementacién de una cola sobre un arreglo no es una operacién inmediata. A diferencia
de la pila, donde los elementos se insertaban desde un lado y se retiraban del otro, en la cola
los elementos entran de un lado y se retiran del otro. No hay forma de que usar insertar al
comienzo y eliminar del final o viceversa garanticen tiempo constante en ambas operaciones.

Cuando se implementan colas sobre arreglos se suele hacer sobre arreglos estaticos y se
implementan como arreglos circulares. Un arreglo circular es un arreglo en el que si me paso del
final vuelvo a empezar por el comienzo. Dicho de otra forma, si un arreglo v tiene N elementos
puedo acceder al elemento i-ésimo como v[i 7 NJ].La operacion de médulo mantiene el acceso
a los indices en el rango 0.. N — 1.

155

NN U s N

= W N =

NN G N

20.2. COLAS CAPITULO 20. OTRAS ESTRUCTURAS ENLAZADAS

La idea de implementar la cola sobre este arreglo es tener un indice para el frente de la cola
y la cantidad de elementos encolados. Simplificando a una cola de enteros con un tamario N fijo
en tiempo de compilacién:

struct cola {
int datos[N];
size_t frente;
size_t cantidad;

+;

typedef struct cola cola_t;

Al inicio tanto el frente como la cantidad valen cero.

El frente es la posiciéon del primer elemento de la cola, mientras que la posicién del tdltimo
se calcula como frente + cantidad, siempre todo médulo N.

La operacion de encolado insertard en la posicién del tltimo e incrementara la cantidad:

void cola_encolar(cola_t *c, int dato) {
c->datos [(c->frente + c->cantidad++) % N] = dato;

}

del mismo modo, la operacién de desencolado quitara el elemento del frente, lo avanzara y
decrecerd la cantidad:

int cola_desencolar(cola_t *c) {
c->cantidad--;
return c->datos[c->frente++ ¥ NJ;

Se puede ver cémo los elementos encolados estardn entre frente y frente + cantidad, mo-
viéndose siempre hacia el final del arreglo. Cuando uno de los indices se caiga del arreglo va a
volver a recomenzar.

Esta claro que si la cola estd implementada sobre un arreglo de N elementos entonces esta
limitada en tamarfio. Esto quiere decir que, guardandonos los chistes, se nos puede llenar la
cola. Las primitivas previas no estdn completas sin el chequeo de que la cola se encuentre llena
o se haya vaciado.

Es inmediato ver que:

bool cola_esta_vacia(const cola_t *c) {
return c->cantidad == O0;

bool cola_esta_llena(const cola_t *c) {
return c->cantidad == N;

Debe ser precondicién de encolar que la cola no esté llena y debe ser precondicién de
desencolar que la cola no esté vacfa. Las primitivas previas deben ser modificadas para verificar
esto.

Las colas se utilizan en muchisimas operaciones de bajo nivel donde se tiene una capacidad
de procesamiento limitada y se atienden pedidos a medida que se da abasto para procesarlos.
Por ejemplo, el buffer de entrada de una aplicacién se puede implementar como una cola. Si la
cantidad de caracteres que un usuario ingresé en el teclado es tanta que no se llegan a procesar
(por ejemplo, se trabd una tecla) pueden descartarse todos los que superen la cantidad maxima.
En muchas aplicaciones de bajo nivel se trabaja con memoria limitada y con buffers estaticos. En

156

NOTAS DE TA130 SEBASTIAN SANTISI

otras aplicaciones si una cola se llena bien se puede redimensionar, copiar todos los elementos
viejos a la nueva cola y seguir trabajando. Si las colas se utilizan para ordenar los recursos
que llegan en funcién de los recursos que se pueden atender, muchas veces que se llene una
cola implica que hay un problema mas grave porque el sistema no da abasto para atender los
pedidos que llegan.

20.2.2. Cola sobre una estructura enlazada

A diferencia de la implementacién de la cola sobre un arreglo que es complicada, la cola se
implementa de manera muy natural sobre una estructura enlazada. Si la estructura enlazada se
implementa con una referencia al primer elemento y al tltimo elemento son eficientes tanto las
operaciones de insertar al final como de eliminar el primero.

Entonces la cola, a diferencia de la pila, crecerd hacia adelante. El primer elemento de la
estructura enlazada seré el frente de la cola, mientras que el altimo de la estructura enlazada
serd el ultimo de la cola. Desencolar serd la operacion de eliminar primero, encolar serd la
operacion de insertar al final. Ambas operaciones se realizan en O(1).

A diferencia de la cola sobre arreglo, la implementada sobre una estructura enlazada no
tiene limite de capacidad.

20.3. Otras estructuras enlazadas

Sin interés por ser exhaustivos mencionaremos algunas variaciones de estas estructuras
enlazadas y algunas versiones mds generales de las mismas.

20.3.1. Listas doblemente enlazadas

La lista doblemente enlazada es una lista tal que cada nodo contiene dos referencias, una al
nodo anterior y otra al nodo siguiente.

Esto permite que la lista pueda recorrerse en uno u otro sentido y que sean eficientes tanto
las operaciones referidas al primer nodo como al tltimo.

20.3.2. Listas ordenadas

Una lista enlazada ordenada es una lista en la cual los datos estdn insertados segtn algiin
criterio de ordenamiento.

En este tipo no tendremos primitivas de insertar al comienzo, al final ni en ninguna posicién
particular. La insercién sélo puede realizarse en la posicién que no altere el orden.

Mas alld de que la lista ordenada tenga aplicaciones, notar que no va a tener las ventajas
que podria tener un vector ordenado, dado que no se puede aplicar el algoritmo de busqueda
binaria (ver 17.3) sobre una lista enlazada. El acceso a cualquier elemento va a seguir siendo

O(n).

20.3.3. Listas circulares

En las listas circulares el siguiente del dltimo nodo apunta al primero, es decir, la lista se
puede recorrer infinitas veces.

Esta es una estructura que suele utilizarse, por ejemplo, cuando se quiere ciclar de forma
indefinida entre diferentes tareas.

157

20.3. OTRAS ESTRUCTURAS ENLAZADMNETULO 20. OTRAS ESTRUCTURAS ENLAZADAS

20.3.4. Arboles

No vamos a profundizar en arboles dado que es un tema que excede a esta materia, sino
apenas describirlos. Los drboles son similares a las listas enlazadas, pero cada nodo tiene en
principio referencias a dos nodos (ramas) siguientes, uno a izquierda y uno a derecha. Es decir,
es una lista que se bifurca en dos en cada nodo.

Hay diferentes maneras de construir y recorrer los drboles, pero la idea general detras de
los &rboles es que si todos los datos se pueden distribuir de manera balanceada entre los nodos
a izquierda y derecha de cada nodo, entonces pueden almacenarse N nodos con una distancia
desde el primero hasta el final de log, N. Esto permite que muchas operaciones que en las listas
enlazadas son lineales decrezcan a 6rdenes de complejidad logaritmicos.

Cuando se dice que en un arbol cada nodo tiene dos ramas estamos hablando de arboles
binarios. Se pueden plantear arboles con tantas ramas como uno quiera.

Las listas enlazadas son un caso patolégico de un drbol cuyos nodos estdn tan desbalanceados
que tienen sélo un nodo siguiente.

20.3.5. Grafos

Los grafos son estructuras enlazadas donde cada nodo puede contener referencias (aristas)
a cualquier otro nodo, sin limites de cantidad. A diferencia de las listas enlazadas y los drboles,
donde los nodos no pueden tener referencias a nodos que estan antes en la estructura, los
grafos pueden tener ciclos, es decir, podemos recorrer las referencias y volver a nodos que ya
atravesamos.

Los grafos se utilizan para modelar problemas como por ejemplo un sistema de rutas, o el
tendido eléctrico, redes, etc.

Un arbol se puede definir en términos de grafos como un grafo aciclico dirigido. Por lo que
las listas enlazadas son, a su vez, un caso particular de grafos.

20.3.6. Colas de prioridad

Cuando presentamos las colas utilizamos de ejemplo la cola de un supermercado. Las colas
del supermercado no son colas como las que mencionamos, hay personas que tiene prioridad
para adelantarse en la cola, sin por eso perderse el orden de llegada.

Muchos problemas de la vida real se resuelven sobre colas de prioridad, es decir, colas que
pueden mantener el orden relativo entre elementos de la misma prioridad pero que tienen
capacidad de atender antes a elementos con mayor prioridad. Pensar en la atencién de una
guardia médica, o en un banco que tiene diferentes categorias de clientes, etc.

Las colas de prioridad generalmente no se implementan sobre listas enlazadas sino sobre
arboles.

158

X N3 O U W=

Capitulo 21

Recursividad

21.1. Recursividad

La recursividad es cuando la definicién de un problema se da mediante el uso de recursivi-
dad. No, volvamos a empezar. Decimos que la solucién de un problema es recursiva cuando se
da en términos de si mismo. Por ejemplo, en los capitulos anteriores estudiamos estructuras
enlazadas, jcomo es la estructura de una lista?, una lista estd formada por nodos donde cada
nodo tiene dos cosas: un dato y la referencia a un nodo, que a su vez tiene un dato y la referencia
a un nodo, que a su vez tiene un dato y la referencia a un nodo... que finalmente tiene una
referencia nula. Si no la lista serfa infinita.

Si bien en el mundo abstracto pueden haber definiciones recursivas que sean infinitas, en el
mundo computacional tenemos memoria limitada y necesitamos que las definiciones recursivas
en algin momento se terminen. Retomando el ejemplo, la lista tiene un caso general que es
recursivo, nodo contiene referencia a siguiente nodo y esta estructura se repite tantas veces
como queramos, y finalmente tiene un caso base que es no recursivo donde se interrumpe la
recursividad.

En el mundo de las matemaéticas hay muchos problemas que se definen de forma recursiva
mediante ecuaciones de recurrencia, por ejemplo la definicién del factorial:

al — nn—1)! sin>0,
! sin=0.

Por ejemplo, si quisiéramos calcular 4! veremos que, como 4 > 0 tenemos que operar 4 x 3!, lo

cual implica calcular un nuevo factorial. Luego 4 x 3 x 2! que implica calcular 4 x 3 x 2 x 1LY

pareceria que vamos a seguir operando por siempre, pero resulta que la férmula anterior implica

calcular 4 x 3 x 2 x 1 x 0! y para resolverla tenemos que calcular 0! y este valor no esta definido

de forma recursiva sino que se trata de un caso base, vale 1. Entonces 4! =4 x3 x2x1x 1= 24.
Si quisiéramos implementar esta funcién en C no habria mayores complicaciones:

int factorial(int n) {
// Caso base
if(n == 0)
return 1;

// Caso general
return n * factorial(n - 1);

159

N T B W N =

21.2. ITERACION VERSUS RECURSION CAPITULO 21. RECURSIVIDAD

En la seccién 7.2 estudiamos la pila de ejecucién de funciones. Ahi vimos que cada invocacién
de una funcién genera un marco de ejecucién diferente, por lo que el espacio local de variables
es distinto en cada instancia.

Si invocdramos a factorial (4), dado que 4 no representa un caso base se ejecutard la linea
de return n * factorial(n - 1).Para resolver esta expresién hay que evaluar la llamada a
factorial(n - 1).Llamar a una funcién implica suspender la ejecucién de la funcién actual
y apilar un nuevo espacio de variables en el stack. Mientras la invocaciéon de factorial (4)
espera se llamard a factorial(3) y se repetird la misma situacion. La llamada con 3 invocard a
la llamada con 2, que invocaré a la llamada con 1 que se quedara esperando a la llamada de
factorial(0) para operar n * factorial(n). Ahora bien, cuando se invoque factorial (0)
la misma constituye un caso base, por lo que la funcién terminard en la expresién return 1.
Es decir factorial(0) evalta a 1, por lo que la linea return n * factorial(0) de la llamada
a factorial(l) evaluard a return 1 * 1y la funcién devolverd un 1. Eso desbloqueard la
llamada a la funcién con 2, que devolverd un 2, y a su vez desbloqueard la llamada a la funcién
con 3 que devolverd un 6. Nos habfamos quedando esperando en la llamada original al factorial
que operard 4 x 6 y devolvera 24.

En la dltima oracién del parrafo anterior hablamos de “la llamada original al factorial”.
La realidad es que, a menos que tengamos acceso a todo el cédigo fuente del programa
para analizarlo, nunca podemos asumir que nuestra invocacién a una funcién recursiva es la
“original”. S sabemos que para computar el factorial de 4 tendremos que depender de la misma
funcién evaluada en 3, pero nada nos indica que no se estd invocando factorial de 4 para
computar el factorial de un ntimero superior. Esta es la esencia de un procedimiento recursivo.

21.2. Iteracion versus recursion

En la seccién anterior dijimos que el factorial se definfa de forma recursiva, sin embargo
probablemente lo hayas visto definido como n! =2 x3 x --- x (n—1) x n, o, o que es lo
mismo como n! = IT}!,i, donde ambas definiciones son evidentemente iterativas. Entonces, jel
factorial es recursivo o iterativo?

Los problemas nunca son iterativos o recursivos, esa distincion aplica para los algoritmos.
Existe una serie de problemas que tal vez sea mas sencillo pensarlos de forma iterativa o tal vez
sea mas sencillo pensarlos de forma recursiva, pero todo lo que se puede resolver de una forma
se puede resolver de la otra, y muchos algoritmos son mixtos.

En este curso vamos a referirnos a un algoritmo o implementacién como recursiva cuando
el problema se resuelve con una funciéon que se llama a si misma repetidas veces para ir
reduciendo el problema. En cambio diremos que es iterativo cuando lo hace iterando.

Volviendo al factorial, supongamos la siguiente implementacién iterativa:

int factorial(int n) {
int £ = 1;
for(int 1 = 2; i <= n; i++)
f *x= 1i;
return f;

}

Nos interesard comparar como se comporta esta implementacién con respecto a la recursiva
que presentamos en la seccién anterior.

Con lo que sabemos deberfamos poder caracterizar facilmente a la implementacién iterativa.
Tenemos una iteracion que depende del valor de n, dentro de ella se realizan operaciones
bésicas, por lo que el algoritmo deberia ser O(n) en tiempo de ejecucién. Ahora bien, vamos a
sumar una variable de andlisis que no solemos medir y es el consumo de memoria. Esta funcién
requiere para operar lo que contiene el marco de ejecucién de factorial (), apenas un par de

160

N Ul = W DN -

NOTAS DE TA130 SEBASTIAN SANTISI

variables locales. No importa el tamafio de 7, la funcién siempre va a consumir los mismos
recursos espaciales, por lo tanto serd O(1) en uso de memoria.

En la seccién anterior hicimos un seguimiento de la ejecucién de la version recursiva. Vimos
que la cantidad de llamadas recursivas va a depender del valor de n. A diferencia de la version
iterativa, la funcién de la implementacién recursiva apenas hace operaciones sencillas dentro,
no importa el tamafio de n (a menos que justo valga 0 y sea un caso base) la funcién se va
a ejecutar en O(1) més el tiempo que lleve ejecutar factorial(n - 1). Como la cantidad de
veces que se autollama es lineal podemos concluir que la implementacién es O(n) en tiempo.

Ahora bien, ;qué pasa en espacio? A diferencia de la implementacién iterativa, en la versién
recursiva cada llamada a la funcién apila un nuevo marco de ejecucién en el stack y las distintas
llamadas se iran acumulando hasta llegar al caso base. Entonces en el peor momento vamos a
tener aproximadamente n marcos de ejecucién en el stack. Cada uno de ellos tiene un tamarfio
fijo el cual no depende de n, pero sumando a todos ellos el espacio necesario serd O(n).

Comparando la solucion iterativa con la recursiva observamos que ambas demoran el mismo
orden de complejidad temporal pero la versién recursiva necesita memoria lineal.

Supongamos el algoritmo de célculo de la potencia x” en su versién iterativa:

float potencia(float x, int n) {
int p = Xx;
for(int i = 0; i < n; i++)
p *= x;
return p;

No hay mucho que decir sobre esta implementacion, es el algoritmo que aprendemos en
la escuela primaria. Aunque si hay algo que decir, ;cémo calcularias a mano 3'1? Més alla de
que la respuesta es 31! =3 x 3 x 3 x ... x 3, no sabemos cémo realizar una multiplicacién en
simultaneo de 11 miembros por lo que si tuviéramos que operar a mano harfamos las cuentas
de a pares. Muchas veces como la computadora opera de forma rapida, somos muy veloces
para programar cosas que si tuviéramos que hacerlas a mano lo pensariamos dos veces.

Volvamos al problema:

31 = 3% 3x3x3x3x3x3x3x3x3x3.

(Hay algtn resultado que podamos calcular una tnica vez y reutilizarlo? Probablemente
identifiques radpido que calculando una tnica vez 3 x 3 = 9 podemos casi que reducir los
términos a la mitad y llegar a una expresién de tipo (3 x 3)° x 3. Como dijimos, cuando
tenemos que hacerlo a mano probablemente miremos con atencién, nada mal, pasamos de
tener que resolver 11 multiplicaciones a tener que resolver s6lo 7. ;Se puede ir mas alla?
Probablemente podamos hacer con la potencia que apareci6 lo mismo que hicimos antes.

Habiendo planteado la idea vamos a proponer esta forma de calcular las potencias. Si # es
par podemos calcular x" sencillamente como x7 - x%, (se ve?, es sencillamente agrupar la mitad
de los términos por un lado y la mitad por el otro. Dado que las dos pontencias son iguales
la operaremos sélo una vez. ;Y si n fuera impar?, es lo que nos pasé en el ejemplo anterior,
tendremos que compensar.

Entonces: 0
X2 -x2 sin es par,
n n n . .
X = xLZJ -xLZJ -X Sl nesimpar,
1 sin=20.

Donde |- - -] es el operador piso, redondear para abajo (truncar). Notar que si vamos a definir
nuestra solucién como una ecuacién de recurrencia necesitamos tener un caso base para que la
misma esté completa. En este caso elegimos que si n = 0 el problema ya no se define mds en
términos de si mismo.

161

O 0 NI O U B W N

—_
- o

21.3. DISENO DE ALGORITMOS RECURSIVOS CAPITULO 21. RECURSIVIDAD

Volviendo al ejemplo, 311 — 35.35.3 donde 3° = 32-32.3, donde 32 = 31 .31, y donde
31 =30.39.3, siendo 3° = 1. ;Podriamos haber agregado como condicién que si n = 1 entonces
x"" = x? Podriamos, hubiéramos ahorrado alguna cuenta. Por fuera de eso, ;se ve como bajamos
notablemente el niimero de operaciones?

Implementemos esta solucién en C:

float potencia(float x, int n) {
if(n == 0)
return 1;

float p = potencia(x, n / 2);

if(n % 2 == 0)

return p * p,;
else

return p * p * X;

Repitamos lo mismo que hicimos con el factorial para las soluciones iterativas y recursivas
de la potencia.

La version iterativa es sencilla, en tiempo tenemos una iteraciéon por lo que es O(n) mientras
que en espacio sélo variables locales por lo que sera O(1).

En la versién recursiva el andlisis requiere un poco mas de atencién, pero estamos ante un
resultado ya conocido. Cada llamada recursiva hace operaciones sencillas que no dependen
de n y en total tendremos tantas llamadas recursivas como veces que podamos dividir a n
por 2, como en el algoritmo de la btsqueda binaria (ver seccién 17.3). Es decir, la complejidad
temporal terminard siendo O(logn). En cuanto a la espacial, otra vez tendrd que ver con
cudntas llamadas a funcién tengamos y es este mismo ntimero, o sea el algoritmo es logaritmico
tanto en tiempo como en espacio.

A diferencia de lo que habiamos evaluado en el factorial, la formulacién recursiva del
problema de la potencia realmente aporta una mejora significativa en tiempo. Es cierto que
consume més espacio, pero recordemos que logaritmico es practicamente lineal®.

Como bien dijimos, las implementaciones iterativas y recusivas son intercambiables, pero
no es tan sencillo implementar el algoritmo de potencia eficiente que acabamos de presentar de
forma iterativa.

Volviendo al tema de la memoria, como se menciond en la introduccién de memoria dindmica
(capitulo 11), el stack es muy limitado en espacio. Si se realizan demasiadas llamadas recursivas
el stack se llenara y se generard un desbordamiento del stack (stack overflow). Este error es un
error irrecuperable. Un algoritmo recursivo que utiliza espacio lineal es bienvenido sélo si el
pardmetro del que depende es acotado. Si ese pardametro puede ser arbitrariamente grande es
una pésima idea proponer una solucién recursiva que utilice memoria lineal, sencillamente se
llenaréd el stack y se romperé la aplicacion.

21.3. Diseio de algoritmos recursivos

En muchos casos va a ser el objetivo resolver un problema utilizando recursividad, por lo
que queremos aprender una forma de pensar problemas de tal manera de llegar a algoritmos
recursivos.

Estructuralmente la idea de un algoritmo recursivo es tener casos bases con soluciones
definidas y luego un caso general. Para que el caso general resuelva usando recursividad lo

10, mejor dicho, que dado que 7 no puede ser nunca mayor que el entero més grande, es decir 22, entonces
log, n < 32. Nunca haremos més de 32 llamadas.

162

NOTAS DE TA130 SEBASTIAN SANTISI

que se va a hacer es intentar desarmar el problema en problemas andlogos més sencillos de los
cuales podamos obtener una solucién de forma maés fécil que para el problema original. A eso
nos referiremos mas adelante cuando hablemos de “reducir” el problema. Cuando decimos
reducir en problemas analogos queremos decir que no estamos cambiando la naturaleza del
problema que recibimos, el problema va a ser el mismo pero, por ejemplo, con menos elementos.

Habiendo hecho esa introduccién una manera de pensar un algoritmo recursivo es siguiendo
estos pasos:

1. Empezaremos planteando problemas donde la solucién al problema sea inmediata. Con
inmediato queremos decir que no haya que hacer operaciones adicionales para conocer la
respuesta. Por ejemplo, si el problema fuera buscar un elemento en un vector, ;qué pasa
si el vector estd vacio?, puedo decir de forma inmediata que el elemento no estd, sin hacer
nada adicional.

2. Lo siguiente que tendremos que plantear es una estrategia de reduccién del problema.
Por ejemplo, sacar un elemento, partir al medio el problema, descartar alguna parte, etc.

3. Ahora vamos a imaginar que tenemos una funcién ya implementada que me devuelve
la solucién para el problema reducido. No importa cémo esté implementada, puede ser
iterativa, puede ser recursiva, puede ser mdgica. Lo importante es que si pregunto la
solucién al problema reducido la obtengo.

4. Con la solucién del problema reducido, ;como respondo mi problema original? Es decir,
en el segundo item saqué un elemento, parti al medio el problema, descarté alguna parte...
(coémo la respuesta que me dio la funcién del item 3 me ayuda a resolver el problema
original?

5. Este ultimo item va a parecer una formalidad pero es el que le da coherencia al resto.
Si reduzco el problema como planteé en el item 2, ;llego eventualmente a uno de los
casos inmediatos que planteé en el item 1?7 Si si, entonces ocurre la magia: La funcién
misteriosa que utilicé en el item 3 es la misma que estoy implementando y tengo una
solucién recursiva.

Sin enredarnos mas utilicemos esta receta para resolver un problema.

21.3.1. Ejemplo 1

Supongamos que queremos implementar de forma recusiva la funcién bool contiene(
< const int v[], size_t n, int elem) que nos dice si un elemento estd o no en un vector.

El primer item nos dice que planteemos condiciones donde sea inmediata la respuesta.
Propongamos una: Si el vector tiene 0 elementos entonces podemos decir con seguridad que el
elemento no esta en él.

Movémosnos al siguiente item, reduzcamos el vector sacdndole su primer elemento. Notar
que este item es absolutamente arbitrario, estamos proponiendo esa forma de reducirlo porque
queremos, no es la tnica y la que elijamos cambiard por completo el algoritmo al que lleguemos.

El tercer item nos dice que imaginemos que tenemos una funcién que si la llamamos
bool b = funcion_magica(v + 1, n - 1, elem); nos puede decir si el elemento esta en el
vector después de que le sacamos su primer elemento.?

El cuarto punto es cuando realmente resolvemos el problema de forma recursiva: Si podemos
aprovechar la respuesta del problema reducido para resolver el problema original todo va a
estar bien. Si no, fallaremos en obtener una solucién recursiva.

2Lamentablemente esta funcién magica funciona para vectores de tamafio n — 1 pero no de tamario 7...

163

N T B W N =

T = W N =

21.3. DISENO DE ALGORITMOS RECURSIVOS CAPITULO 21. RECURSIVIDAD

Entonces, tenfamos el vector v de n elementos. Podemos pensar al vector como v =
{vo,v1,v2,- -+, v,_1}. Nosotros partimos al vector como v = vy U {v1,vp,---,0,_1} y sabe-
mos, porque nos lo dijo una funcién, si el elemento que buscamos estd en el tramo final del
vector. ;Esto resuelve nuestro problema? En principio hay dos opciones, si el elemento estd en
ese tramo, entonces el valor de vy es irrelevante, el elemento va a estar en el vector original. ;Y
si no estd?, en ese caso es importante verificar si vp no es el elemento que buscamos, si fuera
entonces estarfa en el vector original pero no en el reducido.

Bien, tenemos los 4 primeros items de nuestra receta el quinto item nos dice que tenemos
que chequear si nuestra reduccién converje a la solucién inmediata que planteamos. Bueno, si a
un vector de n elementos le saco elementos de a uno por vez eventualmente llegaré a tener un
vector de cero elementos. Entonces esto nos dice que no necesitamos la funcién magica porque
resolvimos el problema de forma recursiva.

Implementémoslo:

bool contiene(const int v[], size_t n, int elem) {
if(n == 0)
return false;

return v[0] == elem || contiene(v + 1, n - 1, elem);
b
Notar que escribimos literalmente el desarrollo que hicimos previamente, si vamos al detalle
la condicién v[0] == elem es un caso base, aunque no lo hayamos escrito como uno.

21.3.2. Ejemplo 2

La mejor manera de entender la receta es hacer otro ejemplo... pero con el mismo ejemplo.
Es decir, vamos a seguir las reglas de manera diferente para llegar a una solucién diferente y
ponerlas a prueba.

Empecemos con el mismo planteo, el vector vacio no posee el elemento.

En el item 2 habiamos tomado una decisién arbitraria, tomemos otra: Vamos a partir el
vector al medio.

Entonces si partimos el vector en dos tenemos dos problemas reducidos podremos llamar:

bool b_izquierda = funcion_magica(v, n / 2, elem);
bool b_derecha = funcion_magica(v + n / 2, n - n / 2, elem);

(51, esa es la forma de partir un vector en dos “mitades”, no nos olvidemos de que no sabemos
si n es par o no.)

Tenemos la solucién a la pregunta sobre las dos mitades del vector, ;como afecta a la
solucion del vector completo? La respuesta deberia ser inmediata, tanto si b_izquierda como
b_derecha son true el elemento esta en el vector.

Entonces podemos escribir:

bool contiene(const int v[], size_t n, int elem) {
if(n == 0)
return false;

return contiene(v, n / 2, elem) || contiene(v + n / 2, n - n /
— 2, elem);

;S1? Pues no, definitivamente no.

164

g = W N -

NOTAS DE TA130 SEBASTIAN SANTISI

Sin entender mucho de recursividad deberia llamarte la atencién una cosa, tenemos una
implemetacién que nos dice si un elemento estd o no en un vector y en todo el c6digo fuente
no hay en ningtn lugar una comparacion de elem con algo. Es més, el tinico return explicito
que aparece dice false y no hay ninguna otra expresién booleana que pueda devolver algo
distinto. ;Qué fall6?

Fall6 que no alcanza con los items 1, 2, 3 y 4 de la receta. El item 5 no es una formalidad o
una conclusion, es algo que tiene que ser verificado.

Si partimos un vector de n elementos sucesivas veces al medio no vamos a llegar siempre
a un vector de tamafo 0. Es fécil verlo, si tenemos un vector de un elemento 1/2 = 0 pero
1—-1/2 =1, se parte en un vector de 0 y otro de 1. Entonces no podemos decir que la funcién
magica sea nuestra funcién.

Destaquemos esto, si realmente tuviéramos implementada previamente una funcién que
resolviera el problema, podriamos llamarla en la linea 5 de nuestra solucién y el problema
funcionarfa. Lo que no podemos decir es que esa funcién mégica es la nuestra y convertir
nuestra solucién en una solucién recursiva.

¢Como solucionamos el problema? Basicamente el problema que estamos teniendo es que la
reduccién que planteamos en 2 no converje al caso base que propusimos en 1. Una solucién
seria cambiar la forma de reducir, por lo que cambiaria por completo el algoritmo, la otra
solucién seria proponer un nuevo caso base. Podria pasarnos que la forma de reducir que
pensamos no vaya para ningtn lado ttil, pero en este caso es inmediato ver que podemos
agregar un caso base que solucione el problema.

Retomemos el item 1, si el vector tiene un solo elemento también es inmediato decir si el
elemento se encuentra en el vector o no. Basta con chequear que ese tnico elemento sea o no el
que buscamos.

Como dividir n por dos repetidas veces siempre va a converger a 1 entonces cumplimos
todos los pasos de la receta:

bool contiene(const int v[], size_ t n, int elem) {

if(n == 0)
return v[0] == elemn;
return contiene(v, n / 2, elem) || contiene(v + n / 2, n - n /

— 2, elem);

Notar que este algoritmo recursivo es diferente a los que analizamos hasta el momento. En
los que habiamos analizado hasta ahora habia s6lo una llamada recursiva y acd hay dos. Si
bien estamos partiendo el problema al medio no es que descartamos una de las dos mitades
si no que lo partimos al medio para operar las dos mitades por separado. La cantidad de
veces totales que se va a llamar a la funcién serd O(n). Ahora bien, ;es esta solucion lineal en
memoria? No, porque las expresiones en C se evaltian de a términos. Cuando cualquiera de
las invocaciones de contiene() ejecuten la linea 5 primero se resolvera una de las llamadas
y luego la otra®. Entonces, como se trata de llamadas disjuntas, hasta no agotarse una de las
ramas no se evaluard la otra y como cada una de las ramas depende de la cantidad de veces
que 1 pueda divirdirse por dos la mdxima memoria terminard siendo O(logn).

Entre la solucién de sacar un elemento o partir al medio deberia ser obvio que la primera
no es viable. Cualquier vector de tamafio considerable nos haria explotar el stack. En cambio
esta version parte al medio, por lo tanto es logaritmica. De todos modos no parecemos haber
ganado nada con respecto a la implementacién iterativa (que implementamos en 17.3), més all4
del ejemplo este no serfa un buen problema a resolver de forma recursiva.

3Si bien en C las expresiones suelen evaluarse en cualquier orden, en este caso hay un operador || y se garantiza
que se va a evaluar de izquierda a derecha por el cortocircuito (ver 5.5.4).

165

O 0 N O U s W N

O 0 NI O U B W N

= e
W N = O

21.4. RECURSIVIDAD DE COLA CAPITULO 21. RECURSIVIDAD

21.4. Recursividad de cola

Se define como recursividad de cola (tail recursion, TR) a las funciones recursivas cuya tltima
cosa que hacen es evaluar el resultado de la llamada recusiva. De los ejemplos implementados
hasta el momento la implementacién de factorial lo tltimo que realiza es una multplicacién, por
lo tanto no es recursividad de cola, similar pasa con la potencia y similar pasa con la bisqueda
del elemento en el vector partiéndolo al medio.

La implemetacién de la bisqueda del elemento sacando de a un elemento por vez podriamos
convertirla en recursién de cola simplemente explicitando el caso base que no consideramos:

bool contiene(const int v[], size t n, int elem) {
if(n == 0)
return false;

if (v[0] == elem)
return true;

return contiene(v + 1, n - 1, elem);

}

Notar que no hay una manera inmediata de reestructurar el c6digo de las otras funciones para
llegar a que el return evalte tinicamente una llamada a funcién.

¢Por qué son importantes las funciones con recursividad de cola? Porque, aunque no lo
parezcan son casi iterativas. Si la funcién no hace ninguna cosa méas después de llamarse a si
misma entonces las variables locales del marco de ejecucién local no se vuelven a utilizar.

(Qué pasa si en vez de generar un nuevo marco de ejecucién para la llamada a contiene(
< v + 1, n - 1, elem) de la linea 8 reaprovechamos el marco de la ejecucion actual. Sélo
tendremos que actualizar v para que sea v + 1 y n para que sean + 1.Y si el marco no se
duplica y la funcién se repite al final, bdsicamente lo que tenemos es una iteracién que va a
romperse tinicamente al alcanzar un caso base.

Podriamos reescribir esto de forma explicita:

bool contiene(const int v[], size t n, int elem) {
while (1) A
if(n == 0)
return false;

if (v[0] == elem)
return true;

v = v + 1;
n =n 1;
elem = elem;

}

Y se ve que tenemos ahora una versién puramente iterativa que hace lo mismo que la versién
recursiva. Hace lo mismo pero ocupando O(1) en memoria en vez de O(n), lo cual no es
irrelevante dado que cuando implementamos esta funcién dijimos que “no era viable” porque
con vectores de tamafio grande haria explotar al stack.

(Entonces nos interesa la recursividad de cola porque hace inmediato reescribir de forma
iterativa? Para eso programemos iterativo y listo. Por empezar, en el ejemplo de buscar un
elemento en un vector ya habiamos concluido que la recursividad no aportaba nada a la solucién

166

O 00 NI O U B W N

T e T e T e T T S S S
O 00 NI O U = W N~ O

NOTAS DE TA130 SEBASTIAN SANTISI

del problema. Pero por el otro lado lo que todavia no mencionamos es que los compiladores
tienen la capacidad de identificar la recursividad de cola.

Cuando prensentamos el tema de CLA dijimos que el GCC tenfa méas de 5000 pardmetros,
uno de ellos, -foptimice-sibling-calls, activa lo que se llama optimizacién de la recursividad
de cola, llamada TRO por sus siglas en inglés (tail recursion optimization). Si bien no es comuin
utilizar este flag de compilacién de forma explicita muchos flags se activan de forma implicita
al activar otras optimizaciones. Las optimizaciones de velocidad -02, -03 y de tamafio -Os
habilitan la TRO en GCC.

Entonces nos interesa la recursividad de cola porque podemos escribir algoritmos recursivos
y dejar que el compilador haga su trabajo e interprete nuestro cédigo como si fuera iterativo*.
En muchos casos esto puede ser mds sencillo de pensar o elegante de implementar.

Por ejemplo retomemos la btsqueda binaria (ver 17.3). Hay que decir que la implementacién
iterativa de la bisqueda binaria tiene indices arbitarios, uno empieza en 0, otroenn - 1, el
corte se da cuando prim <= ult, no es inmediato ver de dénde salen esos limites. En realidad
la bisqueda binaria se piensa de forma recursiva: Recibo un vector ordenado, miro el elemento
del medio, en base a eso descarto la mitad del vector y repito el proceso, esto hasta quedarme
sin vector.

Podemos implementar

// Devuelve un puntero al elemento o NULL si no lo encuentra.
int *busqueda_binaria(int v[], size_t n, int elem) {
// Si nos quedamos sin vector el elemento no estéa:
if(n == 0)
return NULL;

size_t medio = n / 2;
// Lo encontramos en el medio:
if (vlmedio] == elem)

return v + medio;

if (vlmedio] > elem)
// Si estad estd a la izquieda:

return busqueda_binaria(v, m - 1, elem);
else
// Si estd esta a la derecha:
return busqueda_binaria(v + m + 1, n - m - 1, elem);

Es subjetivo si te resulta mas facil de entender la version iterativa o la versién recursiva del
algoritmo, lo importante es que si en la misma hay recursividad de cola para el compilador son
lo mismo.

Si estds atento habras notado que la implementacién de la bisqueda binaria de la seccién 17.3
devolvia la posicién en el vector mientras que nuestra implementacién recursiva devuelve un
puntero, hablaremos sobre eso en la préxima seccion.

21.5. Wrappers

Supongamos la siguiente funcién que suma todos los elementos de un vector de forma
recursiva:

4Valga la aclaracién, activar la TRO no necesariamente haga que el compilador identifique y optimice nuestro cédigo,
todas las operaciones que se delegan en el compilador son sugerencias.

167

N T B W N =

N Ul B W N =

21.5. WRAPPERS CAPITULO 21. RECURSIVIDAD

int sumar (const int v[], size t n) {
if(n == 0)
return O;

return v[n - 1] + sumar(v, n - 1);

}

En esta funcién estamos reduciendo el problema de a un elemento por vez quitando el tltimo
elemento del vector. Para compensar el elemento que quitamos lo sumamos a lo que nos
devuelve la llamada recursiva.

Hasta aqui no hay nada nuevo, lo que cabe mencionar es que no tenemos recursividad de
cola porque la dltima expresion que se evalta antes de hacer el return es una suma.

(Se puede de alguna manera modificar esta implementacién para que lo tltimo que se
realice es la llamada recursiva? Bueno, una forma de hacer esto es subvertir el orden de las
operatorias. La idea serfa que en vez de tener un caso base que nos devuelva cero y adicionar el
elemento que retiramos luego de llamar a la funcién, lo que podemos hacer es acumular los
elementos que vamos retirando y hacer que el caso base sea el que devuelva esa cuenta.

Esto seria algo ast:

static int _sumar (comnst int v[], size_ t n, int acum) {
if(n == 0)
return acum;

return sumar(v, n - 1, acum + v[n - 1]);

3

(En breve explicaremos ese static que aparecio.)

Si bien esta funcién que implementamos hace lo que describimos que querfamos que hiciera,
esta funcién no es la funcién original que tenfamos. Nosotros queriamos una funcién que
sumara los elementos de un vector, y ahora tenemos una funcién que tiene un pardmetro
adicional que no tiene razén de ser en una funcién que acumula. Es mads, ese pardmetro tiene
que valer exactamente 0 en la primer llamada para que la acumulacién sea correcta, pero dentro
de la funcién recursiva no tenemos manera de saber si la instancia que se esta ejecutando es la
primera de la serie o es una intermedia.

El tinico que puede invocar a esta funcién es Alan, y es Alan el que se tiene que encargar de
acomodar los parametros en funcién del problema que Barbara espera resolver:

int sumar (comst int v[], size t n) {
return _sumar(v, n, 0);

Ahora bien, jes recursiva la funcién sumar ()? Vamos a considerar que la funcién sumar ()
resuelve el problema de forma recursiva, porque utiliza a la funcién _sumar () que ejecuta una
recursion. Desde la perspectiva de Barbara que Alan esté usando o no una funcién auxiliar no
altera el resultado, internamente Alan utiliza recursividad.

La funcién sumar () es un wrapper, concepto que ya vimos en la seccién 8.11.1. Un envoltorio
que se ocupa solamente de cambiarle la cara a una funcién que esté detrés.

Hay muchos problemas de recursividad en los cuales agregar pardmetros que no forman
parte del problema hace que la resolucién sea mucho més sencilla (independientemente de
si logramos tener recursividad de cola o no). En todos los casos la firma de la funcién que
ve Barbara hacia afuera tiene que ser la firma natural del problema en cuestién y es ilégico
exigirle a Barbara que llame a la funcién con pardmetros adicionales que tienen que valer cosas
concretas. Es Alan el que tiene que encargarse de hacer esos ajustes.

168

N =

N U1 = W

O 00 NI O U B W N

[S o S S G S
G = W N = O

NOTAS DE TA130 SEBASTIAN SANTISI

Cerrando el ejemplo que quedé incompleto de la seccién anterior, habiamos implementado
una btisqueda binaria que en vez de devolver un size_t devolvia un int *, ;cémo se resuelve?
jwrapper!

size_t busqueda_binaria(int v[], size_t n, int elem) {

int *p = _busqueda_binaria(v, n, elem); // Esta es la de la
<+ seccidn anterior renombrada.

if (p == NULL) return n;

return p - v;

}

¢Se hubiera podido implementar la versién recursiva para que devolviera el indice en vez del
puntero? 51, y podés pensarla si querés, bastante seguro que va a ser mucho mas complicada
que devolver el puntero, que es inmediato, e implementar el wrapper.

Para reforzar cémo agregar parametros puede simplicarle el trabajo a Alan hagamos otro
ejemplo. Decimos que una cadena es capiciia si se lee igual de atras para adelante®. Queremos
implementar una funcién recursiva que nos diga si una cadena es capictia o no. Los casos base
son sencillos, si la cadena tiene 1 o menos caracteres tiene que ser capictia, ademads si el primer
cardcter es diferente al dltimo la cadena no puede ser capictia. En caso contrario sacaremos el
primer y dltimo cardcter e invocaremos de forma recursiva. Implementemos esto:

bool es_capicua(const char *s) {
size t n = strlen(s);

if(n <= 1)
return true;

if(s[0] != s[n - 11)
return false;

char aux[n - 1];
strncpy(aux, s + 1, n - 2);
aux[n - 2] = ’\07;

return es_capicua (aux);

}

Lo tinico que podemos decir positivo de esta implementacién es que aplica recursividad de
cola... el resto es un espanto. Usa VLAs para cadenas de longitud desconocida (y si no los
usdramos tendriamos que usar memoria dindmica), cada llamada tiene que operar un strlen()
y un strnpcy () por lo que el algoritmo terminara siendo O(n?) en tiempo. Es més, hay més
pasos de iteracién en estas funciones que llamadas recursivas en el resto de la implementacién.
Y, por ultimo, si el compilador no aplicara TRO el algoritmo también seria cuadratico en
memoria porque cada marco de ejecucién ocupa espacio O(#n). Reiteramos: Un espanto.

Mirar cémo cambia la implentacién si la funcién recibe la longitud de la cadena con la que
tiene que tratar:

static bool _es_capicua(const char *s, size_t n) {
if(n <= 1)
return true;

5Si se tratara de una frase de multiples palabras diriamos que es un palindromo, pero en este caso no vamos a
considerar espacios, puntuacién, etc.

169

O 0 N3 O Ul

10
11
12
13

21.6. TECNICAS DE DISENO DE ALGORITMOS CAPITULO 21. RECURSIVIDAD

if(s[0] !'= s[n - 11)
return false;

return _es_capicua(s + 1, n - 2);
bool es_capicua(const char *s) {

return _es_capicua(s, strlen(s));

by

Resuelve el mismo problema con complejidad temporal O(n) y si el compilador aplicara TRO
con O(1) en memoria.

21.6. Técnicas de diseiio de algoritmos

En el mundo de los algoritmos y de la solucién de problemas la recursividad es una de
tantas técnicas que se emplean para resolverlos.

Los algoritmos recursivos se pueden estudiar mucho maés en detalle de lo que se hizo en
esta introduccién y es tema de cursos méas avanzados.

Ahora bien, el disefio de algoritmos de forma recursiva es una de muchas formas de abordar
problemas que se aplican en la algoritmia. Hay otras técnicas conocidas de resolucién de
problemas, en este curso introductorio sélo llegamos a presentar esta, con esto queremos decir
que ni recursividad es la tinica ni tampoco la mds importante, hay diferentes técnicas que se
aplican a diferente tipo de problemas.

Sirvan estas lineas para poner esto en perspectiva, al igual que con otros temas, como por
ejemplo el estudio de la complejidad computacional, este curso llega apenas a presentar lo mas
superficial sobre el tema.

En el siguiente capitulo veremos un par de algoritmos recursivos que superan ampliamente
lo que se puede lograr con algoritmos iterativos.

170

Capitulo 22

Algoritmos de ordenamiento

22.1. Introduccién

En la informatica hay muchas ocasiones en la que hay que ordenar datos, incluso a tal punto
de que en Espafia llaman “ordenadores” a las computadoras. Mas all4 de la etimologia las
primeras maquinas que podriamos asimilar a computadoras, que surgieron a finales del siglo
XIX, servian para sumar y para ordenar. Incluso estas maquinas de sumar y ordenar anteceden
a las computadoras programables y a las computadoras digitales.

Hay mdiltiples métodos de ordenamiento y no existe un método universal que sea el mejor
para todos los problemas, si no que hay métodos mejores segtn el tipo de datos que se trate.

En este curso vamos a estudiar cuatro métodos de los que se consideran algoritmos compara-
tivos. Un algoritmo comparativo es aquel que necesita comparar un elemento a con un elemento
b para saber cuél de los dos va antes en el conjunto ordenado. ;Existen entonces métodos que
pueden ordenar de forma no comparativa? Si, si hay informacién adicional sobre los elementos
pueden plantearse métodos no comparativos. Por ejemplo, si calificiramos parciales con notas
del 1 al 10 y quisiéramos ordenar todos los parciales de la facultad por nota creciente alcanzaria
con hacer 10 pilones, uno para cada nota. Repartirfamos cada uno de los examenes en el pilén
que le corresponda segtn la nota y cuando terminemos simplemente apilarfamos los pilones
segln nota creciente. Listo. En una sola pasada ordenamos todos los parciales, obtuvimos
un método que ordena, en principio, en O(n). Y, lo mas importante, nunca comparamos los
examenes entre si.

En el mundo de los algoritmos comparativos nunca vamos a poder obtener un orden
de complejidad lineal, es mas se puede demostrar que lo mejor que se puede lograr con
algoritmos comparativos es O(nlogn). Ahora bien, los métodos comparativos sirven para
ordenar cualquier cosa, no algo particular como los parciales que se catalogan en 10 categorias
segun su nota.

Otra caracteristica que puede estudiarse en un método de ordenamiento es si funciona
in-place o no. Los algoritmos in-place pueden ordenar los elementos de un vector sobre el
mismo vector, mediante operaciones sucesivas, literalmente in-place significa “en el lugar”. Los
métodos que no son in-place necesitan memoria auxiliar durante el proceso de ordenado. Esto
es relevante, porque si queremos ordenar datos que consumen toda nuestra memoria, o incluso,
que no podemos poner en memoria, un método que no sea in-place no nos servira. Por ejemplo,
el método que mencionamos para ordenar parciales, asi como lo presentamos, necesita 10 pilas
que eventualmente van a tener todos los elementos del vector original para operar por lo tanto
no es un método in-place.

Vamos a mencionar una tltima caracteristica que es la estabilidad. Cuando ordenamos
partimos de un vector que tiene los elementos en un determinado orden relativo. Después de
ordenar, ;los elementos que son iguales segtn el criterio de ordenamiento van a estar en el

171

O 00 N O U s W

[S o T = S S G SR G S
Ol = W N = O

T = W N =

22.2. SELECCION CAPITULO 22. ALGORITMOS DE ORDENAMIENTO

mismo orden en el que estaban en el vector original? Volviendo a nuestro ejemplo, supongamos
que los parciales estaban ordenados segtin el orden en el que los alumnos entregaron el examen.
Si los apilamos a medida que recorremos los exdmenes, los parciales que tengan la misma nota
van a apilarse respetando el orden original. Entonces, el algoritmo ese que mencionamos es
estable. Que un algoritmo sea estable significa que si ordenamos por un criterio y luego por
un criterio diferente no se va a desordenar el primer criterio. Por ejemplo, si ordendramos los
parciales primero por orden alfabético y luego por nota, todos los que se sacaron 1 van a estar
juntos ordenados por orden alfabético.

En este curso nos limitaremos a dos métodos de ordenamiento iterativos, seleccion e
insercién, y dos métodos de ordenamiento recursivos, quicksort y mergesort.

22.2. Seleccion

El método de selecciéon probablemente sea de los mas intuitivos de entender. Como en
todos los métodos que vamos a presentar partimos de un vector v de n elementos de tipo
entero. Esto no significa que podamos ordenar otras cosas, si no que queremos hacer foco en
los métodos y no en los datos. El método lo que propone es empezar haciendo una biisqueda
del menor elemento del arreglo. ;Qué posicion deberia ocupar ese elemento en el arreglo
ordenado? Obviamente la primera posicién. Entonces lo que haremos serd intercambiar de
lugar el menor elemento con el elemento que esté en vy. El vector entre v; y v,,_1 todavia se
encuentra desordenado, ;cémo seguimos?, volvemos a hacer una btisqueda de minimo sobre
ese resto de vector y esta vez intercambiaremos el minimo elemento con el de la posicién v;. Y
seguiremos haciendo esto hasta que quede un tinico elemento al final del vector y el vector ya
estard ordenado.

La implementacién del ordenamiento por seleccion es muy sencilla, en primer lugar tenemos
las dos operaciones que mencionamos: Biisqueda de minimo e intercambiar dos elementos de
lugar:

// Devuelve un puntero al minimo elemento del vector v.
int *minimo (int v[], size_ t n) {
int *min = &v [0];
for(size t i = 1; 1 < n; i++)
if (v[i] < *min)
min = v + 1;
return min;

// Intercambia el contenido de los punteros a y b.
void swap(int *a, int *b) {

int aux = *xa;
*a = *b;
*b = aux;

Luego, el método de ordenamiento busca el minimo y lo mueve a la primera posicién
reduciendo el vector en uno cada vez:

// Ordena el vector v mediante el algoritmo de seleccidn
void seleccion(int v[], size t n) {
for(size t i = 0; 1 < n - 1; i++) {
int *min = minimo(v + i, n - 1i);
swap(v + i, min);

172

NOTAS DE TA130 SEBASTIAN SANTISI

Notar que al inicio de cada paso de la iteracion i, el vector en el rango 0. .i se encuentra
ordenado y mas atn todos los elementos v[j] tal que j < i ya estan en su posicion definitiva.
Esa es la invarante de ciclo (ver 12.5) de este método de ordenamiento.

En cuanto a la estabilidad, podemos ver que como nuestra funcién de minimo para dos
elementos iguales reconoce como menor el primero que haya encontrado, entonces se va a
preservar el orden original entre los elementos de v. Por lo tanto se dice que el método es
estable!.

22.2.1. Eficiencia

Antes de entrar en andlisis de eficiencia podemos hacer una observacién sobre el método:
¢Qué hace este método de ordenamiento si el vector que recibe ya estd ordenado? Notar que al
algoritmo no le importa cémo estan los elementos. Si el vector estuviera ordenado el primer
elemento va a ser el menor, pero igualmente hacemos una biisqueda de minimo en todo el
vector. Notar que el método este es ciego a cualquier particularidad del vector, siempre va a
hacer lo mismo. Cuando analicemos la eficiencia veremos que la complejidad va a ser la misma
sin importar ninguna caracteristica en el orden previo de los datos.

La eficiencia temporal del método deberia ser facil de ver. Hacemos n — 1 bisquedas de
minimo en un vector. La primera vez sobre los n elementos del mismo, la siguiente sobre
los n — 1 restantes y asi. Ya nos hemos topado con esta serie cuando presentamos el tema de

complejidad y sabemos que } ! ;i = Viﬁ Entonces temporalmente nuestro método es O(n?).
Podemos hilar un poco més fino en este resultado y hacer una observacién, si bien la cantidad
de operaciones de comparacién y de iteracién es cuadratica, la cantidad de movimientos de
memoria es lineal, porque sélo se hace un movimiento de elementos por iteracién. El método
es ineficiente, pero no es muy intensivo en memoria.
En cuanto al comportamiento espacial, el método es in-place, no necesita memoria adicional
para ordenar.

22.3. Insercion

Antes de ir al método de ordenamiento supongamos el siguiente problema. Tenemos un
vector ordenado y queremos agregar un elemento en él. Ahora bien queremos que el vector
siga estando ordenado después de agregar ese elemento, por lo que no podemos agregarlo en
cualquier lugar. Algo que podemos hacer es recorrer el vector para encontrar en qué posicion
deberia ir el nuevo elemento y luego hacerle lugar para insertarlo, es decir, desplazar todos los
elementos que vayan a continuacién una posicién a la derecha. Otra cosa que podemos hacer es
poner el elemento nuevo temporariamente al final del vector. Si el elemento es mayor que el
altimo elemento ya estamos, pero si no, podemos invertir el dltimo (que es el elemento que
agregamos) con el antetltimo. Ahora bien, puede que el elemento anterior al cual pusimos
nuestro elemento siga siendo mayor en ese caso volveremos a invertir las posiciones y asi hasta
que o lleguemos al comienzo o encontremos un elemento menor.

Implementemos esto:

// Inserta un elemento en un vector ordenado v de n elementos.
// Asume que hay lugar para un elemento mas en la memoria.
void insertar ordenado (int v [], size_ t n, int elem) {

1 Al menos en esta implementacién si hubiéramos puesto if (v[i] <= #min) en la linea 5 de la funcién minimo() ya
no lo serfa.

173

o NN O Ul

g = W N =

22.3. INSERCION CAPITULO 22. ALGORITMOS DE ORDENAMIENTO

size_t 1;

for(i = n; 1 > 0 && elem > v[i - 1]; i--)
v[ii] = v[i - 1];

v[i] = elem;

Notar que si bien dijimos que ibamos a poner el elemento nuevo al final, lo pusimos “vir-
tualmente”, en realidad lo que hicimos fue ir desplazando elementos hacia el final hasta que
llegamos a la posicién que necesitdbamos, habiéndole hecho lugar, y ahi insertamos. Una mezcla
entre los dos algoritmos que mencionamos. Pero lo importante de esta implementacién es que
encontramos la posicién a medida que vamos desplazando, es decir, no tenemos que hacer una
btisqueda previa de dénde terminard nuestro elemento.

El método de ordenamiento por insercién parte de esta misma idea. Tenemos un vector de
n elementos y vamos a ir incorporando al vector los elementos de a uno por vez, haciendo una
insercién ordenada de cada uno de ellos:

// Ordena el vector v segin el algoritmo de insercidn
void insercion(int v[], size_t n) {
for(size t = 1; i < n; i++)
insertar ordenado (v, i, v[i]);

(Nos salteamos el primer paso dado que un vector de un tnico elemento ya estd ordenado.)
Notar que en cualquier paso i todos los elementos previos del vector estaran ya ordenados,
esta es su invariante de ciclo, por lo que podemos llamar a la funcién insertar_ordenado().
El método lo que va haciendo en cada iteracién es desplazar el elemento actual tantas veces
hacia el inicio como sean necesarias para que el vector vuelva a estar ordenado.
Otra vez, como cuando encontramos un elemento no mayor interrumpimos el desplazamiento
hacia atrds, el método preservara el orden previo para elementos iguales y serd entonces estable.

22.3.1. Eficiencia

Empecemos, igual que antes, preguntdndonos qué hace este método con un arreglo ordenado.
Si el arreglo esta ordenado, cada vez que incorporemos un elemento al vector ya serd mas
grande que el dltimo, por lo tanto la insercién ordenada ubicard el elemento al final. Entonces en
una Unica pasada habremos “ordenado” el vector. El algoritmo de insercién tiene complejidad
temporal O(n) si el vector ya estd ordenado. Es decir, no pierde tiempo ordendndolo de nuevo.

Dicho esto, ;y cémo serd el caso general, cuando no podamos decir nada del orden
previo de los elementos del vector? A menos que estemos en el caso anterior, la funcién
insertar_ordenado () tiene complejidad computacional O(n), no importa si el elemento queda
en la mitad, casi al principio o al final, la cantidad de operaciones serd proporcional con el
tamarfio del vector en el que insertemos.

Entonces la complejidad del ordenamiento por insercién serd la suma de todas las llamadas
a insertar_ordenado() con los diferentes tamarfios desde 1 hasta n. Es la misma serie que
presentamos para seleccién y ya sabemos que es O(n?).

Espacialmente estamos ante otro método in-line, por lo que la complejidad espacial sera
o).

Notar que, a diferencia del algoritmo de seleccién, ahora estamos haciendo hasta i movi-
mientos de memoria por iteracién por lo que la cantidad de escrituras serd cuadratica también.
Es mas, si el vector original estd ordenado al revés haremos exactamente ’ﬂﬁ escrituras de
memoria.

174

NOTAS DE TA130 SEBASTIAN SANTISI

22.3.2. ;Qué pasa en el medio?

En la seccién anterior concluimos que para vectores ordenados el algoritmo era lineal y
para desordenados era cuadrético. Si recordamos de la primera seccién de este capitulo dijimos
que lo mejor que se podia obtener con un método comparativo era \ log#n y para el método de
insercién encontramos dos cotas, una mucho mejor que la ideal y otra mucho peor. ;Cudndo
convendrd usar este método?

Si el vector estd ordenado concluimos que en una tnica pasada el método termina. Ahora
bien, ;qué pasa si hay un tnico elemento desordenado? En ese caso haremos, ademas de
esa pasada que es inherente a recorrer el vector, una pasada de insertar_ordenado() para
acomodar ese elemento desordenado en su lugar. O sea, iteraremos dos veces lineal. ;Si hubiera
un elemento mas desordenado? tres veces lineal, y asi hasta que estén todos desordenados y
tendremos n veces lineal, que es el O(n?) que habfamos concluido antes.

Mientras el vector tenga pocos, muy pocos (més especificamente, menos de log, 1) elementos
desordenados, el método serd todo lo bueno que puede ser un método comparativo. Si tuviera
mas tenderd a ser un método cuadratico.

Antes de cerrar en esta conclusién, todavia hay mds. En el desarrollo anterior asumimos que
pocos elementos desordenados se tienen que desplazar mucho por el vector. ;Pero qué pasa si
los elementos en el vector estdn mdas o menos ordenados?, es decir, ;qué pasa si para ubicar a
un elemento en su posicién definitiva no tengo que moverlo més que un par de posiciones de
su posicién original? En ese caso la complejidad de insertar_ordenado () no serd lineal si no
que serd una constante, y el orden total volvera a dar lineal.

Hay muchos problemas donde tenemos que ordenar cosas que estdn més o menos orde-
nadas. Es lo que suele pasar cuando actualizamos datos que estan ordenados. Por ejemplo, si
tuviéramos un ranking de cualquier cosa: fortunas, posiciones en un torneo, universidades,
etc. y actualizdramos los datos de los individuos serfa raro que alguien que en el ranking viejo
estuviera primero en la tabla luego de la actualizacién pasara a estar tiltimo. Lo mds probable
es que entre actualizacién y actualizacién se quede en el lugar o se mueva un par de posiciones
en uno u otro sentido.

El algoritmo de insercién funciona muy mal para ordenar vectores genéricos, pero tiene un
papel aceptable si ordenamos vectores que tienen pocos elementos desordenados o si ordenamos
vectores que estan poco desordenados.

22.4. Mergesort

El mergesort es un método de ordenamiento recursivo. La propuesta del método es partir
el vector a ordenar en dos mitades y ordenar ambas mitades de forma recursiva. Para que el
problema esté completo, el método tiene que juntar los dos vectores ordenados en uno solo
ordenado. La fortaleza del método estd puesta en como se realiza esta operacion de volver a
juntar las mitades ordenadas.

22.4.1. Merge

Se llama merge al algoritmo que une dos vectores ordenados para obtener un nuevo vector
ordenado. ;Podemos hacer esta operacién de forma eficiente, es decir sin volver a ordenar los
vectores?

La idea es la siguiente, si tenemos dos subvectores y queremos juntarlos en un vector, todos
ellos ordenados, el primer elemento del vector tendra que ser el menor de los elementos de los
subvectores. Ahora bien, si los dos subvectores estdn ordenados entonces el menor elemento
de cada uno de ellos tendrdn que estar al comienzo, por lo que el primer elemento del vector
tiene que ser el primer elemento de uno de los dos subvectores. Si “sacamos” ese elemento

175

O 0 N O U = W N

[Y
N = O

13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28

22.4. MERGESORT CAPITULO 22. ALGORITMOS DE ORDENAMIENTO

del subvector que corresponda y lo “pasamos” a la primera posicién del vector ahora tenemos
que buscar qué elemento es el que va segundo en el mismo. La situacién se vuelve a repetir,
habiendo sacado el elemento mas chico ahora el segundo elemento més chico tiene que ser uno
de los que estan al comienzo de alguno de los subvectores. Iterativamente iremos sacando el
elemento menor entre el primero de los dos subvectores y pasandolos al vector hasta que no
queden mas elementos en alguno de los dos subvectores. Cuando lleguemos a esa situacion
todos los elementos que quedan en el subvector que no se haya terminado son mayores que
todos los que estdn en el vector y ademads estan ordenados, por lo que su ubicacién final sera al
final del vector.
Implementemos este algoritmo:

// Une los dos vectores ordenados a y b y devuelve el vector
< resultante.
// El vector resultante mide na + nb.
int *merge (const int al[l], size_t na, comst int b[], size_t nb) {

int *r = malloc((na + nb) * sizeof (int));
if (r == NULL) return NULL;
size_t ia = 0, ib = 0, ir = 0;

// Iteramos hasta que se termine uno de los dos vectores:
while (ia < na && ib < nb) {
if (alial < bl[ibl)
// El elemento méas chico esta al comienzo del
~— subvector a

rlir++] = alia++];
else
// El elemento mas chico esta al comienzo del
<~ subvector b
rlir++] = blib++];
s
// Si llegamos aca es o porque ia == na o porque ib == nb.

// S6lo se ejecutara uno de los siguientes whiles:
while(ia < na)
rlir++] = alia++];

while (ib < nb)
rlir++] = blib++];

return r;

En la implementacién los indices ig, i, e i, sirven para saber el primer elemento de cada
uno de los subvectores y del vector resultado respectivamente. En cada paso de la iteracién
incrementamos el indice de un tnico subvector. Es importante notar que, si por ejemplo, en
la primera iteracién el elemento més chico era el primero del subvector a eso no aporta nada
de informacién a cudl va a ser el elemento menor de la siguiente iteracién, puede ser el de b o
puede ser de nuevo el de a. Incluso podria llegar a pasar que todos los elementos de a sean
menores a los de b, en ese caso se entrard siempre al if y recién cuando se termine la iteracién
principal se copiaran todos los elementos de b al final de r.

Lo importante a ver del algoritmo de merge es que podemos realizar la fusién de dos
subvectores ordenados en un nuevo arreglo en una sola pasada sobre ambos arreglos, es decir

176

O 0 NI O Ul B WD~

e T e S e S e G e
N Ul B W N~ O

NGB W N =

NOTAS DE TA130 SEBASTIAN SANTISI

la complejidad temporal del método serd O(n, + np) o, lo que es lo mismo, O(n;).
En cuanto a la complejidad espacial, no hay manera de realizar la operacién de merge si no
es utilizando un tercer vector, por lo que también la complejidad espacial serd O(n, + ny).

22.4.2. Mergesort

Habiendo ya resuelto la operacién de merge, que nos permite juntar dos arreglos ordenados
en un arreglo entonces podemos implementar el algoritmo del mergesort.

Como estamos partiendo el problema al medio consideraremos como casos bases que el
vector tenga uno o menos elementos, un vector de 0 o 1 elemento ya estd ordenado.

Entonces:

int *_mergesort(const int v[], size_t n) {
if(n <= 1) {
int *r = malloc(sizeof (int));
memcpy (r, v, n * sizeof (int));
return r;

+

int *a = _mergesort(v, n / 2);

int *b = _mergesort(v + n / 2, n - n / 2);
int *r = merge(a, n / 2, b, n - n / 2);
free(a);

free(b);

return r;

b

Notemos que esta implementacién es incompleta, se omiten las validaciones de memoria para
no complejizarla. Notar ademds que en el caso base estamos siempre pidiendo memoria para un
entero, esto es porque si hiciéramos malloc(n * sizeof (int)) devolveria NULL cuando n = 0,
lo que sumaria casos adicionales a sumar en las validaciones si implementdramos completo lo
referido a la memoria.

¢Por qué pusimos un guion bajo en _mergesort()? Porque lo esperable de una funcién
de ordenamiento es que ordene sobre el mismo vector que recibe y esta implementacién esta
devolviendo un vector nuevo. Lo razonable serfa implementar un wrapper:

// Ordena el vector v por el algoritmo de mergesort
void mergesort(int v[], size_t n) {

int *r = _mergesort(v, n);

memcpy(r, v, n * sizeof (int));

free(r);

De la implementacién se hace evidente que el método no es in-place.

Sin pedidos de memoria

Sin cambiar la esencia del algoritmo se pueden reimplementar las funciones anteriores para
que las mismas reciban un vector auxiliar para operar los resultados. En este caso la idea es que
los resultados se vayan ya escribiendo en la posicién definitiva dentro del vector. Esto implica
que en vez de realizar una recursion cldsica pasdndole subvectores a las funciones, lo que vamos

177

LW N

O 00 N O Ul W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

O 00 NI O U B W N

e T = T T
N O G N~ O

22.4. MERGESORT CAPITULO 22. ALGORITMOS DE ORDENAMIENTO

a hacer es pasarle los indices de inicio y fin de los mismos. Ademads las funciones van a conocer
que un subvector es la particién al medio de un vector consecutivo.
El algoritmo de merge entonces sera:

// Une las mitades v([desde]..v[medio] y v[medio]..v[desde] ¥y
— guarda el resultado en v[desde]..v[desde].

// Utiliza a aux como vector auxiliar en el proceso.

void merge (int v[], size_t desde, size_t medio, size_t hasta, int
— aux[]) A

size_t na = medio - desde;
size_t nb = hasta - medio;
size_t 1a = desde;

size_t ib = medio + 1;
size t ir = desde;

while(ia < na && ib < nb)
if (v[ial < v[ibl)
aux [ir++] = v[ia++];
else
aux [ir++] = v[ib++];

while(ia < na)

aux [ir++] = v[ia++];

while (ib < nb)
aux [ir++] = v[ib++];

for (ir = desde; ir < hasta; ir++)
v[iir] = auxl[ir];

}

En esta implementacién unimos sobre el vector auxiliar y al final copiamos el vector ordenado
sobre su ubicacién dentro de la memoria original.
Luego el mergesort se implementara:

void _mergesort(int v[], size_t desde, size_t hasta, int aux[]) {
if (hasta <= desde)
return;

size_t medio = (desde + hasta) / 2;

_mergesort (v, desde, medio, aux);
_mergesort (v, medio + 1, hasta, aux);

merge (v, desde, medio, hasta, aux);

void mergesort(int v[], size_t n) {
int *aux = malloc(n * sizeof (int));
_mergesort(v, 0, n, aux);
free (aux) ;

178

NOTAS DE TA130 SEBASTIAN SANTISI

Notar que si bien pudimos reducir la cantidad de pedidos de memoria seguimos necesitando
hacer un pedido. Esto es porque el método no funciona in-place. Podriamos omitir todos los pe-
didos de memoria si le pidiéramos a Barbara que nos pase un buffer de tamafio correspondiente,
en ese caso la firma del wrapper podria ser void mergesort(int v[], size_t n, int aux

— [1).

22.4.3. Eficiencia

El computo de la complejidad temporal del método de mergesort es un poco mds complejo
que el de seleccién e inserciéon dado que se trata de un método recursivo. Al ser recursivo el
tiempo de una instancia va a depender de lo que dependan sus subinstancias por lo que nos
quedard una ecuacién de recurrencia que tendremos que resolver.

Empecemos llamando T(n) al tiempo de llamar a mergesort con un vector de tamaro 7.
Recordemos la estructura general del algoritmo: Si es el caso base retorno el mismo vector
recibido. Si no llamo a mergesort con las dos mitades del vector y luego hago el merge entre
esas dos mitades.

Entonces para el caso general T(n) = 2T (n/2) 4+ an dado que tengo dos veces el tiempo
que lleve llamar a mergesort con vectores de la mitad del tamafio (T(n/2)) y luego la llamada
a merge, que para dos vectores de tamarfio n/2 tiene complejidad O(n), por lo que habra
una cantidad de tiempo a multiplicando a la cantidad n. Esta es una ecuacién de recurrencia,
estd definida en términos de si misma. Y, como vimos cuando aprendimos recursividad, tiene
que haber un caso particular que termine la recurrencia si no sera infinita. Sabemos que
T(0) = T(1) = b, porque cuando llegamos a un caso base hacemos una operacién que ya no
depende del tamafio genérico .

Entonces tenemos que resolver la recurrencia:

[2T(n/2)4+an sin>1,
T(n>_{b sin <1.

Vamos a empezar haciendo la misma asuncién que hicimos cuando resolvimos la compleji-
dad de la busqueda binaria (seccién 17.3): Supongamos que 1 = 2*, otra vez, una cantidad que
podemos dividir por 2 muchas veces sin que aparezcan cantidades impares.

Entonces en el primer paso de nuestra recurrencia tenemos T(n) = T (2") =2T (2"_1> +
a2k, Ahora podemos desarrollar T <2k_1> segun lo que tenemos en la recurrencia, entonces
T(n) =2 (2T (2°2) +a2t~1) + a2k = 22T (2-2) + 202"

Podemos seguir haciendo esto k veces, en el paso k obtendremos T(n) = 2KT (Zk’k> + ka2k.

Ahora bien como 28-% = 20 = 1 entonces T (Zk_k) = T(1) = b, entonces nuestra ecuacién

queda T(n) = 2¥b + ka2*. ;De dénde sali6 k?, sali6 de que asumimos que n = 28 = k = log, 1.
Entonces podemos hacer ese tltimo reemplazo para obtener la ecuacién en términos de n:

T(n) = nb +log,(n)an.

En esta ecuacién tenemos un término lineal (nb) y un término que es un producto entre 1 y el
logaritmo de #, este tiltimo término es mayor, por lo que si aplicamos notaciéon O podemos
descartar el término lineal y la constante a obteniendo entonces que T(n) = O(nlogn).

Mas allé del desarrollo analitico podemos visualizar el resultado de forma grafica. Empeza-
mos con un problema de tamafio n. Cada vez que lo subdividimos tendremos dos problemas
de tamafio n/2, que a su vez dividiran en 4 problemas de tamafio n/4 y luego en 8 de tamafio
n/8 hasta que no se pueda partir més. La cantidad de veces que podremos partir sera log, 1, asi
que terminaremos después de esa cantidad de divisiones. A su vez, el problema de tamafio # se

179

O 0 N O U o W

10
11
12
13
14
15
16

22.4. MERGESORT CAPITULO 22. ALGORITMOS DE ORDENAMIENTO

resolverd en O(n). Del mismo modo tenemos dos problemas de tamafio /2 que sumados nos
vuelven a dar O(n) y luego tenemos 4 de tamafo #/4 donde obtendremos lo mismo. Es decir,
en cada subdivisién vamos a operar con particiones del vector que siempre suman #n elementos
y podemos particionar log, 1, lo cual implica una solucién en tiempo O(nlogn).

Entonces nuestro algoritmo de mergesort serd O(nlogn) en tiempo y O(n) en memoria. Si
recordamos del inicio de este capitulo, se podia demostrar que ese orden temporal es el mejor
posible para algoritmos comparativos, por lo que no vamos a encontrar ningtn algoritmo que
pueda superar a mergesort para el caso general.

Puede verse que, por ejemplo al igual que en seleccién, al algoritmo de mergesort no le
importa el contenido del vector, es decir, parte al medio tantas veces como puede y luego va
efectuando la operacién de merge. Por lo que no hay un mejor y un peor caso de este algoritmo,
siempre vamos a obtener complejidad O(nlogn).

22.4.4. Merge mas alla de mergesort

Si bien el disparador para ensefiar el algoritmo de merge en este curso es que es lo que
permite implementar el ordenamiento mergesort, la realidad es que merge por si solo es un
algoritmo muy 1til. El poder de merge se da en que se puede sintetizar el contenido de dos
vectores diferentes en apenas una pasada por los elementos de ambos, por lo que permite
resolver de forma lineal operaciones que a priori no lo parecen.

Por dar un ejemplo, supongamos que tenemos dos conjuntos de elementos A y B, por
sencillez de tipo entero. Cada conjunto estd representado en un vector y los elementos de dicho
vector estdn ordenados. Ahora bien queremos encontrar el conjunto interseccién R = A N B.

Una aproximacién ingenua a este problema caeria en la definicién de interseccién de
conjuntos, un elemento x estard en el conjunto interseccién sélo si x € A A x € B. Si quisiéramos
operar esto podriamos verificar si cada uno de los elementos a; de A pertenece al conjunto B,
entonces tendriamos algo asi como:

// Devuelve a interseccidén b, y la dimensidén de este conjunto en
— nr.

int *interseccion(const int al[]l, size_t na, const int b[], size_t
< nb, size_ t *nr) {
// E1 conjunto ocupard como maximo min(na, nb)

int *r = malloc((na < nb ? na : nb) * sizeof (int));
if (r == NULL) return NULL;

*nr = 0;

for(size t 1 = 0; 1 < na; i++)

if (pertenece(b, nb, alil))
r[(¢nr)++] = alil;

// Podriamos redimensionar r a *nr con realloc si quisiéramos.

return r;

Deberia verse que iteramos 7, veces haciendo una llamada a la funcién que nos dice si 4; € B.

(Cuadl es el orden de complejidad de determinar si un elemento estd en B? Si no supiéramos
nada sobre B deberiamos hacer una buisqueda lineal que serd O(#n;). Pero empezamos plan-
teando el problema diciendo que ambos vectores estaban ordenados por lo que podemos hacer
una busqueda binaria que podemos resolver en O(log ;).

180

O 00 NI O U s W N

10

11
12
13
14
15
16
17
18
19

NOTAS DE TA130 SEBASTIAN SANTISI

El orden del algoritmo de interseccién serd entonces O(n,logn;) donde si asumimos que
ambos vectores tienen tamafios comparables podemos decir que es O(nlogn), nada mal.?

Ahora bien si estamos hablando del problema de la interseccién de vectores ordenados en
una seccion que se llama “merge mas alld del mergesort” sera porque merge tiene algo que
aportarnos al respecto de este problema.

Razonemos un poco, si los elementos de A y los de B se encuentran ordenados hay dos
casos a considerar sobre ese primer elemento. Si tenemos que a4y = by esto quiere decir que
ese elemento estd en ambos conjuntos y por lo tanto tiene que formar parte del conjunto
interseccién. En cambio, si son diferentes uno de ellos tiene que ser menor que el otro. El que
sea mds chico no puede nunca estar en el otro conjunto porque si no estaria primero, entonces
ese elemento puede descartarse dado que no va a ser parte del conjunto interseccién. Podemos
aplicar esta légica hasta que se agoten los elementos de uno de los dos conjuntos. Cuando se
agoten los elementos de un conjunto ya no importan los que queden en el otro, no hay forma
que sean parte del conjunto interseccién.

Juntando estas ideas podemos programar:

int *interseccion(const al[l, size_t na, comnst b[], size_ t nb,
— size t *nr) {
int *r = malloc((na < nb ? na : nb) * sizeof(int));
if (r == NULL) return NULL;

*nr = 0;
size_t ia = 0, ib = O0;
while(ia < na && ib < nb) {
if (alial == bl[ib]l) {
r(*nr)++] = alia++]; // Da igual si tomamos este o
— blib]: son iguales.
ib++; // iQué pasaria si no
< dincrementamos ib?: Nada. Pensalo
+
else if(alia] < b[ibl)
ia++;
else
ib++;

return r;

b

No es de sorprendernos que si planteamos la idea de merge entonces el algoritmo de interseccién
nos haya quedado como un tinico recorrido sobre los dos vectores, el orden de complejidad sera
entonces O(n, + 1), mejor que el resultado que habiamos obtenido para la implementacién
ingenua.

Ahora bien, podriamos decir que sélo podemos aplicar el algoritmo de merge si los vectores
estdn previamente ordenados, es cierto. Pero si decimos eso tenemos que ver que si los vectores
no estuvieran ordenados tampoco podriamos hacer la bisqueda binaria en el algoritmo ingenuo
y obtendriamos una complejidad O(n?), totalmente inaceptable. Si los vectores estuvieran
desordenados entonces seria mas eficiente primero ordenarlos por un método como mergesort
y después computar su interseccién, ahora si, con cualquiera de los dos métodos, total ya no
podremos mejorar el O(nlogn) que gastamos en el ordenamiento.

2Y mas que decir que tienen tamafios comparables, nos convendria fijarnos cual de los dos vectores es el més corto e
interar sobre los elementos de ese que son menos.

181

NN U DN~

o]

10
11
12
13
14
15
16
17
18
19
20
21

22.5. QUICKSORT CAPITULO 22. ALGORITMOS DE ORDENAMIENTO

No lo mencionamos previamente pero si representamos los conjuntos mediante vectores
ordenados deberiamos garantizar que el resultado R también esté ordenado y puede verse que
ambos métodos que propusimos lo verifican. También tendria sentido que no hubiera elementos
repetidos en ninguno de los vectores, cosa que si se cumple en A y A se va a cumplir también
en R para ambos métodos.

Esta implementacién de la interseccién que planteamos utilizando la légica de merge puede
generalizarse para otras operaciones de pertenencia. En todos los casos podemos establecer
primero una cota de la cantidad maxima de elementos va a tener el resultado final, y en todos
los casos podremos decidir qué hacer segtin la relacién entre los primeros elementos y qué
hacer con el resto del vector al terminar la iteracién principal. Sin ir més lejos la implementacién
original de merge se parece mucho a la unién entre dos conjuntos, con el detalle de que si
hay elementos en ambos conjuntos estardn repetidos en el resultado, ;cé6mo se modificaria la
implementacién para no incluirlos? Otras operaciones que podemos hacer con la légica del
merge es, por ejemplo, encontrar todos los elementos de A que no estén en B, etc.

22.5. Quicksort

Llegamos al ultimo método que vamos a presentar en este curso, el método de quicksort.
Este, al igual que mergesort, también es un método de ordenamiento recursivo.

La idea del quicksort consiste en empezar eligiendo un elemento arbitrario del vector
(el primero, el dltimo, el del medio, alguno, ya lo discutiremos més adelante) denominado
pivote. El pivote se utilizard como referencia para construir dos subvectores: Uno con todos
los elementos menores al pivote y otro con todos los elementos mayores al pivote. Luego de
forma recursiva se ordenardn ambos subvectores. A diferencia del mergesort donde la vuelta
de la llamada recursiva no era evidente si ahora tenemos un subvector ordenado con todos
los elementos menores al pivote y otro subvector con todos los elementos mayores también
ordenado es evidente que el vector resultante tendra que ser la concatenacion de los elementos
menores, el pivote y los elementos mayores.

Entonces la implementacién sera:

void quicksort(int v[], size_t n) {
if(n <= 1)
return;

// Eleccidon de un pivote:
size_t npivote = n / 2; // Elegimos de pivote el del medio,
— es arbitario.

int pivote = v[mnpivote];

// Particidn en elementos menores y mayores:

malloc((n - 1)
malloc((n - 1)

*

sizeof (int)) ;
sizeof (int));

int *menores

*

int *mayores

size_t nmenores = 0; nmayores = O0;
for(size t i = 0; 1 < n; i++)
if (i == npivote)
continue;
if (v[i] < pivote)
menores [nmenores++] = v[i];

182

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

NOTAS DE TA130 SEBASTIAN SANTISI

else
mayores [nmayores++] = v[i];

// 0Ordenamos recursivamente menores y mayores:

quicksort (menores, nmenores) ;
quicksort (mayores, nmayores) ;

// Concatenamos menores + pivote + mayores:

memcpy (v, menores, nmenores * sizeof (int));
v[nmenores] = pivote;
memcpy (v + nmenores + 1, mayores, nmayores * sizeof (int));

free(menores) ;
free(mayores) ;

}

Esta implementacién es literalmente el algoritmo que se explicé. Para estar completa habria
que agregar las validaciones de memoria que se omitieron.

Como se puede ver, estamos teniendo que consumir # — 1 de memoria en cada llamada
para los subvectores de elementos menores y mayores. Nuestra implementacién no es in-place.

22.5.1. Eficiencia

Antes de analizar la complejidad del algoritmo intentemos entender la idea de la reduccién
del problema. En cada llamada recursiva estamos sacando un elemento del vector, que es el
pivote, por lo que los subvectores que ordenamos recursivamente tienen un elemento menos.
Pero del capitulo de recursividad nos deberia haber quedado en claro que sacar un elemento
de un vector no conlleva de por si a una buena solucién recursiva.

La idea fuerte de reduccién del quicksort estd en que si tenemos un buen criterio para elegir
el pivote esperariamos que la cantidad de elementos menores a él sea similar a la cantidad de
elementos mayores a él. Es decir, reduzcamos el problema en dos mitades.

Esto que parece ser un objetivo simple no es facil de garantizar en la préctica partiendo
de la base de que tenemos un vector de n elementos desordenados y no podemos dedicar un
esfuerzo computacional a encontrar el pivote tal que sea la mediana del conjunto.

Para entender como afecta el pivote pensemos algunos casos extremos. Supongamos que
elegimos como pivote a vy, el primer elemento del vector. Si el vector estuviera ordenado, ;qué
pasaria? Es evidente ver que si el vector esta ordenado entonces vy es el menor elemento del
vector, por lo tanto todos los demds elementos seran mayores. Entonces en vez de reducir
el problema en dos subproblemas de tamafio anl resulta que resolvimos el problema en un
subproblema de tamarfio 0 y otro subproblema de tamafio # — 1 y como el vector estd ordenado
a cada llamada recursiva va a pasarle lo mismo. Si cada llamada recursiva reduce el problema
en un elemento y para armar el subvector necesita iterar todos los elementos la complejidad
de cada llamada individual sera O(n) y habra n llamadas por lo que estaremos ante un caso
O(n?). Esto mismo se repetird si eligiéramos como pivote el dltimo elemento o si el vector
estd ordenado al revés. Siempre que no queden balanceadas las dos mitades estaremos en
complejidades cuadréticas.

El problema es dependiente de dos cosas, una es de la eleccién del pivote y la otra es de cudl
es el orden de los datos. Podés pensar que una implementacién como la que hicimos, donde
tomamos de pivote al elemento del medio resuelve el problema. Si bien es cierto que en el

183

[6§]

O 00 N O U1 oW

10

11

12
13

14

22.5. QUICKSORT CAPITULO 22. ALGORITMOS DE ORDENAMIENTO

caso de que el vector esté ordenado tomar el elemento central como pivote va a garantizar que
los subvectores sean justo de la mitad del tamafio, esto no necesariamente sea asi para el caso
genérico de un vector desordenado, que a fin de cuentas serd el tipo de vectores que querremos
ordenar. Hay multiples técnicas para elegir el mejor pivote de diverso grado de complejidad y
no vamos a profundizar en ninguna de ellas en este curso.

Volviendo al tema de la eficiencia, el peor caso es cuadratico, ;pero cuanto sera el mejor
caso?

Si cada vez que partimos en menores y mayores cada uno de estos tiene la mitad (menos
uno) del problema original, y si el pre y postprocesamiento de los datos es lineal, entonces
vamos a estar ante la misma ecuacion de recurrencia del mergesort y sabemos que eso resulta
en complejidad O(nlogn).

No perdamos de vista que, incluso con la mejor eleccion del pivote, siempre podemos recibir
un vector ordenado de una forma patolégica tal que las particiones terminen desbalanceadas
y quedemos del lado cuadratico. Asiy todo, podemos decir que en promedio el quicksort se
comporta O(nlogn).

22.5.2. In-place

Si bien cuando presentamos el algoritmo dijimos que nuestra implementacién no era in-
place eso no significa que no pueda implementarse una que lo sea. Presentamos la version que
utiliza vectores auxiliares porque es la implementacién natural que surge de la descripcién del
problema. Es decir es una solucién intuitiva para el algoritmo propuesto.

La idea de la implementacién in-place es lograr realizar la separacién entre los elementos
menores y los mayores sobre el mismo vector, sin utilizar memoria auxiliar.

¢Cémo podemos lograr esto? La idea es pensar en el vector como si tuviera tres secciones:
Al principio del vector los elementos menores al pivote, al final del vector los elementos maés
grandes y en el medio del vector los elementos que todavia no clasificamos entre menores y
mayores. Cuando el algoritmo comienza todos los vectores pertenecen a la tdltima categoria,
no sabemos qué son. A medida que vamos avanzando con la clasificacién iremos dejando al
comienzo los elementos menores y al final los elementos mayores, hasta que clasifiquemos a
todos.

La idea es asi:

// Divide a v en dos subvectores, devuelve la posicidén del pivote.
size_ t clasificar(int v[], size t n) {
size_t npivote = n / 2; // Arbitrariamente elegimos el del
<< medio, otra vez.
int pivote = v[npivote];

// Guardamos el pivote al final temporariamente:
swap (v + npivote, v + n - 1);

size_t imenores = 0; // Los menores estaran entre O..
—» 1imenores

size_t imayores = n - 2; // Los mayores estardn entre
<~ imayores..n-2.

while (imenores < imayores) A
if (v[imenores] < pivote)

// Si el primer elemento después del bloque de menores
<~ es menor que el pivote, ampliamos el bloque de
<> menores:

imenores++;

184

15
16

17
18
19
20
21
22

23
24
25

26
27
28

N O G W N

NOTAS DE TA130 SEBASTIAN SANTISI

else {
// En cambio si no es menor lo mandamos al bloque de
— mayores:
swap(v + imenores, v + imayores);

imayores ——;

// Al terminar la iteracidén todos los menores estan al
— comienzo, le siguen los mayores y en la ultima posicidn
— esta el pivote.

// La iteracidn termina cuando imenores == imayores.

// Pero el pivote tiene que estar justo después de los menores
—

swap(v + imenores, v + n - 1);

return imenores;

Més alld de la implementacion y los detalles, ;te das cuenta qué tiene de problematica la idea
de clasificar de esta manera sobre el mismo vector intercambiando elementos del principio con
el final? Es la tinica propiedad de clasificacién de algoritmos de ordenamiento que mencionamos
en todos los demas métodos pero omitimos cuando hablamos del quicksort: Desordena el orden
relativo de los elementos originales. Entonces el quicksort implementado sobre esta funcién de
clasificacién no serd estable>.

Teniendo implementada esta clasificaciéon que nos divide a v en los dos subvectores entonces
podemos implementar el método de ordenamiento:

void quicksort (int v[], size_t n) {

if(n <= 1)
return;
size_t npivote = clasificar (v, n);
quicksort (v, npivote - 1); // QOrdenamos los

— menores al pivote
quicksort (v + npivote + 1, n - npivote); // QOrdenamos los
— mayores al pivote.

(Falta algo al final? No, no falta nada. Como la funcién de clasificacién nos dejé los subvectores
en su posicion relativa al pivote la llamada recursiva trabaja en el lugar definitivo. Literalmente
eso es lo que significa in-place.

Esta nueva versién presentada tiene una complejidad espacial O(1), en contrapartida
perdimos la estabilidad.

22.6. Resumen

Hagamos una comparativa de los 4 métodos que presentamos:

3A diferencia del quicksort que implementamos antes que preservaba los érdenes.

185

22.6. RESUMEN CAPITULO 22. ALGORITMOS DE ORDENAMIENTO

Método Mejor caso Caso promedio Peor caso In-place Estable
Seleccion O(n?) O(n?) O(n?) Si Si
Insercion O(n) O(n?) O(n?) St Si

Mergesort O(nlogn) O(nlogn) O(nlogn) No Si
Quicksort (I) O(nlogn) O(nlogn) O(n?) No Si
Quicksort (I) O(nlogn) O(nlogn) O(n?) Si No

No vamos a volver a mencionar los puntos fuertes y débiles de cada uno porque para eso ya
estd el capitulo. De todos modos ahora que tenemos todos los métodos juntos para compararlos,
(consideras que hay uno que sea mejor que los otros tres? Tomate un tiempo para pensar la
respuesta.

En la seccién 8.11.1 vimos que la <stdlib.h> ya trae programado un método para ordenar
arreglos. Esta funcién se llama gsort () que no es otra cosa que una abreviatura de quicksort.
(Es el método que elegiste en el parrafo anterior?, ;se te ocurre cudl fue el criterio para haber
elegido ese método?

Probablemente esta sea una de las mejores ideas para cerrar este texto. En buena parte
de la ingenieria no existen soluciones universales si no que siempre estamos ante soluciones
de compromiso. Si existen soluciones que no aportan nada bueno, pero generalmente no hay
una solucién ganadora que cubra todos los aspectos. En este caso a la hora de implementar
una funcién de biblioteca gané la robustez de una solucién que no necesita utilizar memoria
dindmica, incluso sacrificando estabilidad y corriendo el riesgo de degenerar a érdenes de
complejidad cuadraticos. Una funcién de biblioteca que intente ordenar un vector y requiera
duplicar la memoria o, peor atin, falle es inaceptable. Es incluso inaceptable contrastada con
el riesgo de en algunos casos tardar tiempos absurdos. No hay una sola forma de resolver
los problemas, hay soluciones para distintos contextos y el arte es desarrollar el criterio que
permita elegir la mejor solucién para el que nos toca.

186

	Introducción
	Algoritmos y programación
	Procesadores y programación
	El lenguaje de programación C
	El hola mundo
	Funciones

	Sintaxis básica de C
	Identificadores
	Expresiones
	Operadores
	Precedencia y asociatividad.
	Instrucciones
	Declaración de variables
	Declaración de funciones
	Comentarios

	Datos
	Datos en la memoria
	Declaración de una variable
	Tipos de C
	Literales
	Operación entre tipos
	Conversión explícita de tipos
	Redefinición de tipos
	printf()

	El proceso de compilación
	Interpretando la salida del compilador
	Parámetros del compilador
	Constantes

	Control de flujo
	El ciclo while
	Bloques
	El ciclo for
	El ciclo do-while
	Booleanos
	El condicional if
	Early return
	Funciones y variables booleanas
	break y continue
	El condicional switch
	El operador condicional
	goto

	Arreglos
	La memoria de los arreglos
	El tipo size_t
	El problema del sizeof de los arreglos
	Arreglos multidimensionales
	Arreglos de largo variable (VLA)
	Cadenas de caracteres
	Encabezado string.h
	Entrada y salida (I/O)

	Alcance de variables
	Globales y locales
	La pila de ejecución
	Paradigma procedural

	Punteros
	Introducción
	Nomenclatura
	Devolver valores mediante punteros
	Punteros al inicio de un arreglo
	Aritmética de punteros
	La memoria ``data''
	Punteros a void
	El puntero NULL
	Punteros a punteros
	Matrices
	Punteros a funciones

	Estructuras y tipos enumerativos
	Estructuras
	Tipos enumerativos
	Tablas de búsqueda

	Manejo de bits
	Memoria dinámica
	Introducción
	El heap
	malloc() y free()
	Pérdidas de memoria
	Valgrind
	realloc()
	Casos de borde
	Matrices dinámicas

	Contratos
	Documentación
	Autodocumentación
	Contratos
	assert()
	Invariantes de ciclo
	Alan y Bárbara

	Tipo de Dato Abstracto
	Tipo de Dato Abstracto
	Interfaz
	Bárbara
	Alan
	Invariantes de representación
	Modularización

	Modularización
	Proceso de compilación
	Modularización
	Archivos de encabezados
	Make
	Entidades públicas y privadas
	Macros de función

	Manejo de archivos
	Introducción
	Interacción con los archivos
	El tipo FILE
	Archivos de texto
	Archivos binarios

	Argumentos en Línea de Comandos (CLA)
	Argumentos
	Uso de argumentos
	Comodines

	Complejidad Computacional
	Eficiencia
	Notación O
	Búsqueda binaria
	Lectura del vector

	Contenedores
	Concepto
	Listas
	Implementación con un arreglo dinámico
	Lista genérica
	Buscar un elemento
	Interfaz de lista

	Listas enlazadas
	La lista enlazada
	Implementación como TDA
	Recorrer la lista
	Eliminando nodos
	Listas genéricas
	Casos particulares
	Eficiencia
	Iteradores

	Otras estructuras enlazadas
	Pilas
	Colas
	Otras estructuras enlazadas

	Recursividad
	Recursividad
	Iteración versus recursión
	Diseño de algoritmos recursivos
	Recursividad de cola
	Wrappers
	Técnicas de diseño de algoritmos

	Algoritmos de ordenamiento
	Introducción
	Selección
	Inserción
	Mergesort
	Quicksort
	Resumen

