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Capı́tulo 1

Introducción

El siguiente apunte intenta ser una guı́a de consulta complementaria a las clases de TA130.

1.1. Algoritmos y programación

Antes de entrar en detalles de implementación importa explicar el concepto de algoritmo.

Los algoritmos son una abstracción de pensamiento que existe desde milenios antes de que
el ser humano piense ni siquiera en tener computadoras.

Un algoritmo es sencillamente una sucesión de pasos sistemáticos que sirven para resolver
un problema. Por ejemplo, cuando en la escuela primaria aprendemos a multiplicar dos números
decimales de n cifras lo hacemos utilizando un algoritmo determinado.

Los algoritmos tradicionalmente se explican de forma informal como una serie de pasos
en lo que se conoce como un pseudocódigo. Insistimos en el punto de que son estructuras
abstractas, ası́ como nuestro lenguaje es abstracto. Somos nosotros los que tenemos la capacidad
de interpretar de esa explicación los pasos a seguir.

Por el otro lado, los programas son implementaciones de algoritmos para ser ejecutados
por una computadora. Ahı́ ya no hay abstracción, las computadoras necesitan una secuencia
de instrucciones estrictas para ser ejecutadas en un determinado orden, sin ningún tipo de
ambigüedades.

A diferencia de los algoritmos, que se expresan en lenguaje natural, los programas se
implementan en en lenguajes de programación. Los lenguajes de programación tienen reglas
estrictas de sintaxis sin ambigüedades.

Volviendo a los algoritmos y la programación, ambas cosas son independientes entre sı́ y en
este curso nos centraremos en ambas por separado. Necesitaremos aprender un lenguaje para
programar nuestros algoritmos, pero además necesitaremos herramientas más abstractas para
diseñar nuestros algoritmos previo a programarlos. Por lo general no hay un único algoritmo
para realizar una misma operación y puede haber mucha diferencia en el rendimiento (por
ejemplo medido en cantidad de operaciones o de memoria) entre diferentes variantes, cosa
que no tiene nada que ver con los detalles de implementación en un lenguaje en particular.
Retomando el ejemplo de la escuela primaria aprendemos a multiplicar dos números de
n cifras con un algoritmo que realiza n × n = n2 multiplicaciones de 1 cifra, sin embargo
existen algoritmos como por ejemplo el algoritmo de Karatsuba que utiliza menos de 3 · n1,58

multiplicaciones.
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1.2. PROCESADORES Y PROGRAMACIÓN CAPÍTULO 1. INTRODUCCIÓN

1.2. Procesadores y programación

Las computadoras son dispositivos que tienen la caracterı́stica de ser programables. La
circuiterı́a de base de la computadora se llama hardware, mientras que el programa que se
carga sobre ella se llama software. En esta materia vamos a centrarnos en la construcción del
software.

Si bien estamos hablando de computadoras en el ámbito de la electrónica hay muchos
dispositivos que contienen un microcontrolador programable y no necesariamente tengan el
aspecto de lo que usualmente interpretamos como una “computadora” (un monitor, un teclado,
mouse, gabinete, etc.). En este curso nos centraremos en programar para computadoras, pero
el área de aplicación de la electrónica también incluye a los dispositivos “embebidos” que
contienen microprocesadores en su interior.

Genéricamente un dispositivo programable consiste de dos áreas: Un procesador y una
memoria.

Una memoria es un dispositivo con determinada capacidad que permite almacenar datos
(usualmente bytes) en una determinada posición numerada para recuperarlos después. En la
memoria podemos encontrarnos valores que queremos recordar, pero también va a ser donde
se aloje el programa que queramos ejecutar.

El procesador es un dispositivo que sabe cómo ejecutar un determinado número de opera-
ciones. Cada operación es una acción atómica del estilo de sumar dos datos, traer un dato de la
memoria, almacenar un resultado en ella, tomar una decisión, etc. Las operaciones se ingresan
en forma de instrucciones que no son más que un número que codifica el código de operación
y los parámetros de la misma. Esto es lo que constituye el código de máquina, y los programas
no son otra cosa que una sucesión de instrucciones. Cuando el procesador ejecuta un programa
no hace otra cosa que ir decodificando de forma secuencial las instrucciones de un programa y
ejecutando las operaciones que allı́ se contienen.

Dado que las instrucciones de código máquina son valores binarios difı́ciles de memorizar
lo más usual es que si se quiere generar un programa a partir de sus instrucciones las mismas
se codifiquen en lenguaje de ensamblador. El lenguaje de ensamblador (assembly) consiste en
ponerle nombres amigables a cada una de las operaciones, estos nombres se llaman mnemóni-
cos. Entonces por ejemplo una operación en vez de ser la operación 13 se transformará en la
operación ADD (suma en inglés), y por ejemplo la operación de sumar el dato del registro B
que se identifica con el 2, en vez de ser una codificación de ese 13 con el 2 que prodrı́a dar
algo estrafalario como 210, se programará como ADD B. Escribir un programa que codifique
instrucciones de assembly en código máquina es muy sencillo y desde el inicio de la programa-
ción que se utilizan de estos programas, llamados ensambladores, para poder programar en
assembly y generar con él los programas.

Como cada procesador tiene sus propias operaciones el código de máquina es único para
cada modelo de procesador. Es decir, los programas codificados para un determinado procesador
no funcionarán en otro (y también el assembly de cada procesador será único). En este contexto
es donde surgen los lenguajes de programación. La idea de los lenguajes de programación es
poder expresar las operaciones de forma semántica y dejar que otro pograma, el compilador,
decida qué operaciones de assembly hay que utilizar en determinada plataforma en particular
para concretar esa operación. Los lenguajes de programación no están atados a una plataforma
en particular y, siempre y cuando haya un compilador disponible, podremos compilar nuestro
programa para ejecutarse en un procesador determinado.

1.3. El lenguaje de programación C

Los primeros lenguajes de programación surgieron en la década de 1950, y hay un sinnúmero
de ellos disponibles. En este curso utilizaremos particularmente el lenguaje C.
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La historia de C nace de la mano del sistema operativo Unix. En el año 1970 Ken Thompson
y Dennis Ritchie, entre otros, desarrollan este sistema operativo para la computadora DEC
PDP-7. El código de Unix se migra posteriormente a la computadora siguiente PDP-11/20 y
queda en claro que desarrollar un sistema operativo en assembly no es eficiente porque hay
que reescribirlo por cada nuevo procesador.

En ese momento habı́a una gran variedad de lenguajes de programación orientados a las
matemáticas, a los sistemas bancarios, inteligencia artificial, enseñanza, etc. pero no habı́a
ningún lenguaje de programación orientado a la escritura de sistemas operativos. Para escribir
un sistema operativo lo que se necesita es un lenguaje con operaciones de suficiente bajo nivel
para poder ser traducidas casi uno a uno en instrucciones de assembly, sin abstracciones de alto
nivel que sean complejas de traducir a lenguaje de máquina. Además se necesita que el lenguaje
provea de una interfaz simple para acceder a los recursos de hardware. Con esas premisas es
que en el año 1972 Dennis Ritchie desarrolla el lenguaje de programación C, lenguaje en el cual
se reescribe completo Unix después.

Hoy en dı́a, más de 50 años más tarde, C sigue siendo uno de los pocos lenguajes de
programación que permite acceder de forma transparente al hardware que está debajo y que
conjuga la elegancia de un lenguaje de programación con la potencia del assembly, pero
garantizando la portabilidad a cualquier procesador.

Dicho sea de paso, que el lenguaje de programación C date del año 1972 no significa que
hoy en dı́a se programe el C de ese año. El lenguaje ha sido actualizado múltiples veces, y ha
pasado por un proceso de estandarización con estándares ISO que son revisados y mejorados
cada una decena de años. El primer estándar data del año 1989, pero hay estándares 1999,
2011, 2018 y actualmente se está elaborando un estándar nuevo. En este curso en particular nos
centraremos en el estándar ISO-C99.

1.4. El hola mundo

En el año 1978 Brian Kernighan y Dennis Ritchie publican el libro El Lenguaje de Progra-
mación C, conocido simplemente como K&R (Kernighan and Ritchie) y en él introducen el
lenguaje a partir de un programa que saluda al usuario. La influencia de ese libro ha hecho
que desde ese entonces el “hola mundo” sea el estándar para presentar cualquier lenguaje de
programación.

El hola mundo en C tiene el siguiente aspecto

hola.c

1 # include <stdio.h>
2

3 int main() {
4 printf("Hola␣mundo\n");
5 return 0;
6 }

y aunque en principio es el programa más sencillo que podamos hacer, explicar cada una de sus
lı́neas implica adentrarse en cómo funciona el lenguaje. Dejémoslo para un poco más adelante.

Lo que mostramos recién es el código fuente del hola mundo, ahora bien, eso no es un
programa, es decir, no es un conjunto de instrucciones que pueda ejecutar un procesador. Es en
realidad la receta para que un compilador pueda construir ese programa.

Si quisiéramos construir un programa deberı́amos meter el contenido del hola mundo en
un editor de textos sin formato y guardarlo como un archivo, por ejemplo hola.c, para luego
compilarlo.
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El compilador que vamos a utilizar en este curso se llama GCC (GNU compiler collection) y
vamos a asumir que lo tenemos instalado en nuestro sistema GNU/Linux y que accedimos a
una terminal del sistema.

Si quisiéramos compilar hola.c para generar el ejecutable hola.exe en la terminal escri-
birı́amos lo siguiente:

$ gcc hola.c -o hola.exe
$

Si todo estuviera bien el compilador generarı́a el programa hola.exe y no imprirı́a salida,
en cambio si hubiera errores el compilador nos indicarı́a de qué errores se trata.

Una vez generado el hola.exe podrı́amos ejecutarlo de la siguiente manera:

$ ./hola.exe
Hola mundo
$

Esa es la ejecución de nuestro primer programa.

1.5. Funciones

Presentemos el siguiente código:

1 int cuad(int n) {
2 return n * n;
3 }

Ese código define una función llamada cuad(). Una función en programación es asimilable
a una función en matemática1. Desde afuera podemos pensarla como una cajita negra en la que
entran valores y la función nos devuelve otros valores.

Esta función recibe como parámetro un valor llamado n de tipo entero (int) y devuelve a su
vez un valor entero. La estructura de declaración de una función es:

1 tiporetorno nombrefuncion(tipoparametro1 nombreparametro1 ,
↪→ tipoparametro2 nombreparametro2 , ...);

Internamente la función devuelve (return) el resultado de computar n * n, es decir la
multiplicación de n por si mismo, o sea n elevado al cuadrado2.

Las funciones nos van a servir para encapsular operaciones complejas, cosas que queramos
reutilizar, para jerarquizar complejidades en nuestros programas, entre otras cosas.

Una función por sı́ sola no hace nada, una función es un fragmento de código que se ejecuta
únicamente si la función es invocada. Invoquemos a la función cuad():

1 # include <stdio.h>
2

3 int cuad(int n) {
4 return n * n;
5 }
6

7 int main() {
8 int cuad_dos = cuad (2);
9 printf("El␣cuadrado␣de␣2␣es␣ %d\n", cuad_dos);

1Ojo, que sean similares no quiere decir que sean lo mismo.
2De ahı́ el nombre de la función.
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10 return 0;
11 }

Hay muchas cosas para explicar, vayamos por partes.
El fragmento que dice cuad(2) es una invocación a la función cuad(). Internamente el

programa interrumpe su flujo de ejecución para ejecutar el código de la función cuad(). Como
estamos invocando a la función con el valor 2 ese va a ser el valor que va a tomar n adentro de
la función. Internamente se va a operar n * n que, como n vale 2, va a dar como resultado 4 y
finalmente la función va a devolver ese valor 4. Es decir, después de llamar a la función se va a
continuar con el flujo y donde decı́a cuad(2) el resultado de esa invocación será 4.

La expresión int cuad_dos declara una variable llamada cuad_dos de tipo entero. Las
variables sirven para almacenar valores que queremos recuperar después. El operador = es
la asignación, a = b le asigna a la variable a el resultado de la expresión b. En este caso,
almacenamos el 4 en la variable cuad_dos.

Cuando hicimos el hola mundo no lo sabı́amos pero ahora sı́: printf() también es una
función y la estamos invocando. Esta función lo que hace es imprimir por la terminal lo que le
pidamos. Prestar atención a que esto se aparta por completo del concepto de funciones que
tenemos en la matemática, no invocamos a printf() para que nos devuelva algo3 sino que la
invocamos para que haga algo por fuera del mecanismo de pasaje de parámetros, devolución
de valores.

printf() es una función compleja que puede recibir un número variable de parámetros,
ahora bien el parámetro más importante es el primero, que es la “cadena de formato”. Esta
cadena le dice a printf() qué es exactamente lo que tiene que imprimir, y además le indica
qué parámetros adicionales se han utilizado. En este caso el modificador " %d" le dice a printf
↪→ () que espere un parámetro adicional de tipo entero. Al ejecutar la función imprimirá por
la terminal "El␣cuadrado␣de␣2␣es␣4\n", es decir, el " %d" se reemplazará por el valor de la
variable cuad_dos.

¿Qué representa el "\n" al final de la cadena de formato de printf()? Probá sacándolo y
fijate qué pasa.

Ahora bien, ¿de dónde salió printf(), quién la programó, cómo es que puedo usarla si no
la definı́? Bueno, printf() es una función de la biblioteca de C. La biblioteca de C es provista
por el compilador y trae un montón de funciones auxiliares que no necesitamos programar4.
Vamos a entrar en detalles más adelante.

Llegado a este punto podemos explicar qué significa la lı́nea #include <stdio.h> que está
al comienzo. Esa lı́nea incluye las cosas necesarias para que el compilador “sepa” cómo es
printf(). La palabra stdio significa standard input/output, o sea, entrada/salida estándar, y
declara todas las funciones que tienen que ver con leer y escribir datos.

Nos falta explicar una última cosa y es el elefante en la habitación: main() también es
una función. Particularmente se trata de una función que no recibe ningún parámetro y que
devuelve un valor entero. La función main() es una función especial. Es el “punto de entrada”,
es decir la función que se ejecuta cuando se inicia nuestro programa. Toda la funcionalidad
que implementemos va a estar comandada desde esta función, lo cual no quiere decir que no
podamos llamar a otras funciones, como efectivamente estamos haciendo en el ejemplo.

El valor de retorno de main() es un retorno hacia afuera del programa, al sistema operativo.
La convención es que si nuestro programa terminó correctamente devolvamos 0. A estas alturas
del conocimiento de C todos nuestros programas van a terminar correctamente ası́ que de
momento devolveremos siempre 0.

3Lo cual no quita que printf() nos devuelva algo, que como no nos importa no lo estamos capturando en ninguna
variable.

4Y que en algunos casos tampoco sabrı́amos cómo programar, porque para desarrollar la funcionalidad de printf()
necesitarı́amos conocer un montón de detalles sobre la plataforma donde estamos compilando y la gracia de utilizar un
lenguaje de programación era justamente la de abstraerse de la plataforma y dejarle ese dolor de cabeza al desarrollador
del compilador.
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Y con esto no sólo explicamos el ejemplo, explicamos además todas las cosas que están en el
hola mundo.
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Capı́tulo 2

Sintaxis básica de C

Como ya dijimos los lenguajes de programación, a diferencia de los idiomas que hablamos,
tiene una sintaxis estricta que no deja lugar para ambigüedades. Entendemos por sintaxis la
estructura del lenguaje, cómo se forman sus “oraciones”, cuáles son sus conectores, etc. En
paralelo a ello tenemos la semántica que es la intención de una expresión. Una expresión puede
ser sintácticamente correcta, pero no tener ningún sentido desde la semántica.

En las siguientes secciones iremos abordando diferentes partes de la sintaxis básica del
lenguaje C.

2.1. Identificadores

Los nombres de las variables y funciones, llamados identificadores, pueden contener letras
de la a a la z, de la A a la Z, números del 0 al 9 y guiones bajos (_) con la salvedad de que no
pueden empezar con un número.

Por ejemplo, son identificadores válidos suma_cuadrados, sumaCuadrados, SumaCuadrados,
_suma_cuadrados, SUMA_CUADRADOS o SumaCuadra2, mientras que son inválidos 2SumaCuadra,
SumaCuadra-2 o int.

¡Momento!... ¿por qué el último es inválido, si bien cumple las reglas? Es inválido porque
int es una palabra reservada del lenguaje. Son palabras reservadas todas aquellas que ya
significan algo diferente en C. La siguiente es la lista completa de palabras reservadas del
lenguaje:

auto double int struct break else long switch case enum register typedef char
↪→ extern return union const float short unsigned continue for signed void default
↪→ goto sizeof volatile do if static while _Bool _Imaginary restrict _Complex inline
↪→

2.2. Expresiones

Las expresiones en C son las construcciones que al ser evaluadas resultan en un valor. Las
hay de diferentes tipos:

Literales: Los literales son las expresiones que literalmente ya representan un valor en sı́.
Sencillamente evalúan a ese valor. Ejemplos: Números enteros: 0, -3, 42, números de
punto flotante: 0.0, -3.3, 42.92039, 6.022e23, cadenas de caracteres: "Hola␣mundo".

Variables: Las variables evalúan al valor almacenado en dicha variable. Por ejemplo: Si hemos
definido int i = 5, si luego operamos i + 1 la expresión i evaluará a 5, el valor que
almacenó.
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Operaciones: Las operaciones permiten combinar otras expresiones y evalúan a lo que compute
esa operación. Por ejemplo 5 + 7, 5 y 7 son literales y evalúan a su valor y la operación +
es la suma, por lo tanto la expresión evaluará a 12. Dado que las operaciones permiten
combinar expresiones y a su vez las operaciones son expresiones esto significa que se
pueden hacer expresiones con operaciones tan complejas como uno quiera, por ejemplo
(a + 5)/ 3 + b.

Llamadas a función: Las llamadas a función evalúan a lo que devuelva la función para las
expresiones que reciba como parámetros. Por ejemplo cuad(1 + 2) evaluará a 9.

Asignación: Si bien en C la asignación = es un operador, es decir su comportamiento está
englobado en el ı́tem “Operaciones” vale la pena explicarlo por separado. La operación
de asignación devuelve el valor que asignó. ¿El operador de asignación no servı́a para
asignar? Sı́, también, además modifica el valor de la variable que esté a izquierda, pero el
operador de asignación como operador devuelve el valor de lo que asignó. Por ejemplo,
la expresión: a = b = 5 se ejecuta con la siguiente asociatividad a = (b = 5), es decir,
primero asigna 5 a b, ahora bien, ¿qué asigna en a? Bueno, como se dijo, el operador
devuelve lo que asignó, es decir 5, por lo que en a también se asignará 5.

Pregunta: ¿Cuánto valen a y b después de ejecutar la siguiente expresión: b = 5 + (a =
↪→ cuad(3 - 1)+ 2);

2.3. Operadores

Los operadores de C pertenecen a varias categorı́as, en esta sección vamos a ver algunas de
ellas.

2.3.1. Aritméticos

+: Operador de suma. Ej.: 2 + 2, evaluación 4.

-: Operador de resta. Ej.: 100 - 1, evaluación 99.

*: Operador de multiplicación. Ej.: 2 * 5, evaluación 10.

/: Operador de división. Ej.: 7 / 2, evaluación 3.

%: Operador del resto de la división. Ej.: 7 % 2, evaluación 1.

2.3.2. Signo

-: Signo negativo. Ej.: Si a = 5, -a evalúa a -5.

+: Signo positivo. Ej.: Si a = 5, +a evalúa a 5. (Sı́, es muy útil...)

Notar que si bien el sı́mbolo de estos operadores es el mismo que el de los aritméticos
la diferencia es la aridad de los mismos. Los operadores aritméticos son binarios, es decir,
necesitan dos valores para operar, mientras que estos operadores son unarios (o monarios).
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2.3.3. Asignación:

En principio el operador de asignación es el = y como ya se dijo, además de modificar el
valor de la variable a izquierda, devuelve el valor que asignó.

El operador de asignación se puede combinar con los aritméticos para actualizar el valor de
una varible.

Ejemplo, si a = 5 la expresión a += 2 es equivalente a a = a + 2 por lo que luego de
ejecutarse a valdrá 7.

De forma análoga esto mismo funciona para los operadores -=, *=, /=, %= (en estos últimos
dos prestar atención a que la actualización es sobre el numerador).

Las operaciones de actualización son algo muy común en la programación y preferiremos
utilizar estos operadores por una cuestión de claridad en la intención (semántica) de una
expresión.

2.3.4. Incrementos:

Entre todas las operaciones de actualización, la más común es la de incrementar en uno o
decrementar en uno una variable y para ello el lenguaje C provee no uno si no 4 operadores.

El operador ++ incrementa en uno el valor de una variable, mientras que el operador --
decrementa en uno el valor de una variable. Ahora bien, hay dos variantes de cada uno y
difieren no en cómo modifican a la variable si no en su valor de evaluación dentro de una
expresión.

Cuando el operador ++ (--) se encuentra a izquierda de la variable es el operador de
preincremento (decremento) y el mismo evalúa al valor nuevo de la variable.

Ejemplo:

1 int b, a = 5;
2 b = ++a;

a vale 6 y también vale eso b, porque el resultado evaluó al valor de a luego de ser incrementado.
Cuando el operador ++ (--) se encuentra a derecha de la variable es el operador de postin-

cremento (postdecremento) y el mismo evalúa al valor viejo de la variable.
Por ejemplo:

1 int b, a = 5;
2 b = a++;

a vale 6, porque la incrementamos, pero en este caso b vale 5 porque el operador evaluó al valor
de a previo al incremento.

Dicho sea de paso, notar que ++a es una expresión totalmente diferente a a + 1. Si bien
ambas evalúan al valor que da incrementar a en uno, la primera modifica a la variable mientras
que la segunda no. Es más, la primera requiere obligatoriamente que haya una variable mientras
que la segunda puede ser una operación entre expresiones literales, o de llamada a función o
una expresión derivada.

2.4. Precedencia y asociatividad.

Todos los operadores tienen una precedencia definida. Para simplificar diremos que (en la
mayor parte de los casos) las mismas son las que esperarı́amos que tuvieran.

Es decir, si evaluamos 2 * 3 + 1 la multiplicación tendrá precedencia sobre la suma y el
resultado será 7.

Si quisiéramos forzar una precedencia diferente de la predeterminada podemos utilizar
paréntesis: 2 * (3 + 1) dará como resultado 8.
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El operador de asignación tiene la más baja de las prioridades, o sea, es el último que se
ejecuta.

En cuanto a la asociatividad, la misma en C es de izquierda a derecha. Es decir, en la
expresión 1 + 2 + 3 la misma se ejecutará como si fuera (1 + 2)+ 3. Ahora bien C no define
un orden de ejecución, las expresiones pueden evaluarse en cualquier orden. En el ejemplo dado
que se trata de literales esto carece de importancia, pero si la expresión fuera f() + g() + h()
por más que la asociación sea de izquierda a derecha no hay garantı́a de en qué orden se van a
evaluar las funciones, y si las mismas modificaran algún estado interno o interactuaran con el
exterior el resultado serı́a indefinido1.

Todas las asociatividades son de izquierda a derecha con excepción de las asignaciones, por
ejemplo a = b = 5; evalúa de derecha a izquierda: a = (b = 5);.

2.5. Instrucciones

Un programa se compone de instrucciones o sentencias. Serı́an las “oraciones” de nuestro
código, cada una con un significado independiente de las demás.

Las instrucciones se separan por ; y generalmente se escribe una instrucción por lı́nea, si
bien al compilador no le importa cómo acomodemos el código.

En el ejemplo del hola mundo, la lı́nea del printf() representa una función ası́ como lo
representa la lı́nea del return.

Las instrucciones pueden constituirse en bloques, los bloques se definen en C con un { para
iniciarlo y un } para cerrarlo. Los bloques se pueden anidar, por lo que cada } termina el último
bloque que se abrió.

En los ejemplos vistos hasta el momento utilizamos bloques para definir el contenido de las
funciones main() y cuad().

Generalmente una instrucción se constituye por una expresión de las que ya desarrollamos,
pero también son instrucciones la declaración de una variable, la declaración de una función, el
return y las estructuras de control de flujo que veremos más adelante.

2.6. Declaración de variables

En el lenguaje de programación C una variable tiene que ser declarada antes de ser utilizada.
Para declarar una variable, o un conjunto de variables se escribe primero el tipo de la

variable y luego el nombre (o los nombres) de la misma.
Por ejemplo:

1 int a;
2 int b, c;

Además una variable puede o no ser definida en el momento de su declaración. Definir una
variable es darle un valor. Por ejemplo:

1 int a, b = 5;

En este caso estamos declarando la variable a pero declarando y definiendo la variable b
con un valor de 5.

1Cuando decimos que un resultado es “indefinido” no significa que sea un resultado ilógico, en este caso el resultado
tiene que ser alguna de las combinaciones de evaluaciones de las funciones. Indefinido significa que no sabemos cuál
y por lo tanto nuestro programa puede hacer cosas diferentes según decida el compilador. Esto implica que nuestro
código es ambiguo, lo cual viola la idea de que un programa no deberı́a serlo. Si quisiéramos eliminar la indefinición,
podrı́amos tranquilamente evaluar las funciones previamente en el orden que queramos, guardar los resultados en
variables y luego operar con los resultados.
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Siempre que utilizamos una variable en una expresión (es decir, que queramos evaluar su
valor) tiene que haber sido definida previamente. En el lenguaje C si una variable no hubiera
sido definida su contenido es indefinido y dará lugar a resultados impredecibles.

2.7. Declaración de funciones

En los ejemplos vimos cómo definir una función con la secuencia tipo de retorno, nombre de
función, parámetros y entre llaves el bloque de instrucciones que constituye su implementación:

1 int sumar(int a, int b) {
2 return c;
3 }

La primera lı́nea de la definición representa la firma, prototipo o interfaz de esa función. Es
la que dice cuáles son los parámetros formales de la función.

Ahora bien, hay veces en las cuales sólo queremos declarar una función para darle a conocer
al compilador la firma de una función pero no proveer (todavı́a) la definición de la misma. Para
ello escribimos la firma seguida de un ;:

1 int sumar(int a, int b);

Esto no nos libera de proveer una implementación de la función sumar() eventualmente,
pero dado que el compilador trabaja de arriba hacia abajo en una única pasada, permite poder
utilizar funciones que aún no están definidas.

Hay dos usos primarios para declarar una función. El primero es un tema de estructura de
código, si cada función tuviera que estar definida antes de ser utilizada nos obligarı́a a tener
todas las funciones ordenadas según cuál usa a cada cuál e incluso no podrı́a resolver casos
donde dos funciones se llamaran mutuamente. La declaración resuelve este problema y permite
estructurar libremente el código.

El otro uso de la declaración de una función es cuando la implementación va a ser provista
por otro mecanismo. Ese es el caso de, por ejemplo, el uso de la función printf() que
utilizamos pero no implementamos. Y ahora sı́ terminamos de explicar el ejemplo del hola
mundo, la instrucción #include <stdio.h> de la primera lı́nea incluye en mi código fuente
el archivo de encabezados (headers, de ahı́ .h) stdio.h provisto por el compilador. En él no
está la definición de la función printf() pero sı́ su declaración, lo cual permite que yo pueda
utilizarla. La implementación de la misma se incorporará a mi ejecutable en un paso posterior a
la compilación que explicaremos más adelante.

2.8. Comentarios

Muchas veces hay porciones de código que necesitan documentación de qué representan.
Esta documentación no forma parte del código que le importa al compilador si no que le
importa a otros programadores. Para esto se utilizan los comentarios.

C tiene dos variantes de comentarios, de múltiples lı́neas o de final de lı́nea. Los comentarios
de lı́neas múltiples inician con un /* y se terminan con un */, mientras que los de final de lı́nea
van desde un // hasta el final de la lı́nea. Por ejemplo:

1 /*
2 Calcula el módulo de un vector 2D.
3 Argumentos:
4 float x: coordenada de las abscisas
5 float y: coordenada de las ordenadas
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6 Devuelve: (float) el módulo del vector
7 */
8 float modulo_vector(float x, float y) {
9 return sqrt(x * x + y * y); // sqrt -> raiz cuadrada , incluir

↪→ <math.h>
10 }

18



Capı́tulo 3

Datos

Cuando en el primer capı́tulo definimos al procesador dijimos que el mismo consistı́a en un
procesador y una memoria, donde la memoria almacenaba bytes accesibles de forma individual
sabiendo su posición.

Queremos remarcar eso: la memoria guarda paquetitos de ocho unos y ceros y desconoce
qué representan esos valores. Desde el punto de vista de la memoria en determinada posición
hay un determinado patrón de bits que representa un byte.

Dado que la computadora opera con ceros y unos se puede decir que la computadora
guarda valores binarios.

Los seres humanos solemos usar el sistema decimal para la mayor parte de las cosas y
lamentablemente no hay una manera directa de traducir decimal a binario y viceversa sin hacer
una secuencia de operaciones.

En el lenguaje C los literales pueden ingresarse en decimal, como ya vimos hasta el momento,
pero también en base octal y en base hexadecimal:

1 1234 // Valor decimal
2 01234 // Valor octal
3 0x1234 // Valor hexadecimal

Son octales los literales con un número impar de ceros a izquierda, y son hexadecimales los
literales con un 0x a izquierda.

Internamente los 3 números ingresados se guardarán según su representación binaria e,
irónicamente, no hay manera de ingresar literales binarios en el estándar C99.

Las bases 8 y 16 son de particular interés dado que 23 = 8 y 24 = 16 y esto implica que las
conversiones de octal y hexadecimal a binario pueden hacerse de forma muy sencilla agrupando
dı́gitos de a 3 y 4 unidades respectivamente. Los números que se piensan en binario suelen
escribirse en hexadecimal para reducir el número de dı́gitos.

3.1. Datos en la memoria

Si por ejemplo en la memoria RAM tuviéramos la sucesión de bytes [01010010, 10100001,
↪→ 01010100, 10100001] esto podrı́a representar diferentes hipotéticos valores según cómo
interpretáramos esos valores.

Por ejemplo, si dijéramos que esos valores representan números enteros positivos repre-
sentados por su codificación binaria en la memoria estarı́an (en decimal) los valores [82,
↪→ 161, 84, 161]. Ahora bien, si dijéramos que son números signados, donde el primer bit
representa el bit de signo y la codificación es complemento a 2 podrı́a interpretarlos como
[82, -95, 84, -95].
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La interpretación no termina ahı́. Podrı́a decir que cada valor representa un carácter según
una tabla, por ejemplo la tabla ASCII Latin 1 y en ese caso tendrı́a [’R’, ’¡’, ’T’, ’¡’] y
esto suena arbitrario, pero es exactamente ası́ cómo se almacenan textos en una computadora.
Tanto en la memoria RAM como en la memoria de disco los datos no son otra cosa que valores
binarios con una determinada codificación.

Retrocedamos un poco sobre el problema, si la memoria almacena bytes, ¿esto significa que
no puedo almacenar números de más de 8 bits?, o sea, tengo sólo 28 = 256 valores posibles
para almacenar? No, tranquilamente puedo combinar los 4 bytes del ejemplo y decir que tengo
un único número de 32 bits que representa el valor [1386304673].

¿Cuál es la conclusión de esto? En primer lugar la memoria es sólo un dispositivo para
almacenar datos en crudo, a la memoria no le interesa qué representa lo que almacenó ni cómo
se opera. En siguiente lugar, si sólo pudiéramos ver los datos en una memoria no nos dirı́an
mucho porque los mismos datos pueden tener diferentes interpretaciones según el contexto. El
que le va a dar coherencia a esos datos es el compilador. El compilador es el que sabe cuál es el
tipo del dato que guardó en determinada posición, y por lo tanto sabe qué instrucción tiene
que utilizar el procesador para operar sobre ese dato.

Para nosotros el uso de la memoria va a ser transparente. Si nosotros guardamos el valor
entero 1234 recuperaremos el valor entero 1234. Si a ese número le sumamos uno, vamos a
obtener el 1235. Y no importa si ocupó un byte, dos, cuál fue la codificación para ordenar
esos bytes y si se guardó en binario o en otra base. Ese es un problema del procesador y del
compilador, para nosotros son números decimales que podemos manipular con las reglas que
conocemos.

3.2. Declaración de una variable

Como ya mencionamos, los datos se encuentran en la memoria y son bytes.
La acción de declarar una variable en C es pedirle al compilador que reserve una porción de

una determinada cantidad de bytes de memoria y le asigne a esa porción un nombre con el
cual nos vamos a referir.

Cuando escribimos int a; estamos diciéndole al compilador que identifique con la etiqueta
a un bloque de memoria de tamaño suficiente como para operar con una variable de tipo entero.

Si cuando declaramos una variable no la definimos eso significa que la variable a contendrá el
valor que tenı́a la memoria antes de decir “esta porción de memoria se llama a”. Consideramos
a ese valor como “basura” dado que puede valer cualquier cosa. Esto no es un problema
siempre y cuando no pretendamos leer el valor de la variable a antes de definirlo.

3.3. Tipos de C

El lenguaje de programación C trae una colección de tipos básicos. Estos tipos se separan en
dos categorı́as: enteros y de punto flotante.

Los tipos enteros son: char, short, int, long, mientras que los tipos de punto flotante son
float y double.

3.3.1. Enteros

Los tipos enteros contienen una cantidad fija de bits y en esa cantidad de bits se representan
números binarios enteros. Como la cantidad de bits es fija los números tienen una determi-
nada capacidad, un valor máximo, por encima de ese valor ya no pueden seguir guardando
información. Lo importante es que por debajo de ese valor pueden guardar cualquier valor
particular.
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Si tenemos n bits para guardar información y cada bit puede guardar dos valores diferentes,
la cantidad de valores difentes que podemos almacenar en los bits será 2n.

Ya vimos que existen números sin signo y números con signo. En el caso de números con
signo, esos 2n valores se repartirán entre 0 y 2n − 1. En el caso de los números sin signo esos
valores estarán entre −2n−1 y 2n−1 − 1. La asimetrı́a en los signados es porque existe un único
cero y es positivo.

Los tamaños relativos de las diferentes clases de enteros dependen de la plataforma y del
compilador y no están definidos en el estándar.

Daremos como ejemplo las clases en el compilador GCC para 64 bits1:
Tipo Bits Bytes Desde Hasta
signed char 8 1 -128 127
unsigned char 8 1 0 255
short 16 2 -32.768 32.767
unsigned short 16 2 0 65.535
int 32 4 -2.147.483.648 2.147.483.647
unsigned int 32 4 0 4.294.967.295
long 64 8 -9.223.372.036.854.775.808 9.223.372.036.854.775.807
unsigned long 64 8 0 18.446.744.073.709.551.615

Lo importante de estos valores es notar que como el crecimiento es exponencial duplicar la
memoria incrementa extraordinariamente el rango de los valores.

3.3.2. Tamaño de la memoria

Como ya se dijo, el tamaño de los tipos dependerá de la plataforma y del compilador.
En las aplicaciones donde necesitemos conocer el tamaño de un tipo o de una variable

podemos utilizar el operador sizeof.
Aplicar sizeof(x) siendo x un tipo o una variable evaluará al tamaño en bytes de x.
Para los tipos enteros el único tamaño definido en el estándar es el de un char:
sizeof(char) = 1.
Para el resto de los enteros se verifica que:
sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long), sin más restricciones

adicionales.

3.3.3. Desbordamiento (overflow)

Como se dijo los enteros tienen un número fijo de bits. ¿Qué pasa cuando una operación
necesita más? Sencillamente el resultado se almacena en los bits que haya disponibles.

Por ejemplo, si tuviéramos una variable unsigned char x = 255; la misma se representa
en binario como 11111111, es el número más grande que podemos almacenar (28 − 1). Si
hiciéramos x++ en el mundo de las matemáticas el resultado deberı́a ser 100000000, es decir
256. Pero como sólo disponemos de 8 bits se almacenará 00000000, es decir, el resultado será
cero. Podemos pensar como que la variable “pegó la vuelta”.

Esto aplica también para números signados incluso sin llegar a quedarnos cortos de bits.
Si tuviéramos signed char x = 127; esta variable se representa como 01111111 (2n−1 − 1). Si
hiciéramos x++ obtendrı́amos 10000000, lo cual entra perfectamente en 8 bits... pero estamos
invadiendo el bit que reservamos para el signo, un número que tenga en 1 el bit más pesado
tiene que ser un número negativo, por lo que el resultado da -128, es decir el número más chico.
También la variable “pega la vuelta”.

El desbordamiento puede darse haciendo operaciones o también asignando resultados
en una variable de tamaño insuficiente. En todos los casos se guardarán sólo los bits para

1Y además utilizaremos esos valores como referencia en el resto del curso, pese a que sepamos que pueden variar en
otra plataforma.
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los que haya capacidad y se perderán el resto. A diferencia de lo que se puede pensar, este
comportamiento es totalmente determinı́stico y predecible. Tal vez desde la semántica no tenga
sentido, pero sintácticamente el lenguaje funciona ası́.

3.3.4. Números de punto flotante

Los números de punto flotante en C utilizan una representación cientı́fica de mantisa fija y
exponente.

Por ejemplo, el número −12,345 podrı́a expresarse con una mantisa fija de 6 dı́gitos y en base
decimal como 123450× 10−4. Notar que la notación cientı́fica permite escribir números muy
chicos o muy grandes jugando con el exponente, pero manteniendo siempre fija la precisión.
Todos los números tienen la misma cantidad de cifras representativas. Los números cientı́ficos
dan cuenta de la magnitud, no del valor exacto.

Los números de punto flotante utilizan internamente algo similar a esto, reservan un bit para
el signo, una cantidad de bits para la mantisa y otra para el exponente... con la particularidad
de que están en base dos, normalizados y un montón de detalles de implementación que vienen
del estándar IEEE 754 y no nos importan.

Nos importa sólo este resumen:
Tipo Bits Bytes Desde Hasta Precisión (decimal)
float 32 4 ±1,4× 10−45 ±3,4× 1038 7
double 64 8 ±2,2× 10−308 ±1,7× 10308 16

Y más que todo nos importa de esta tabla la precisión, que está expresada en dı́gitos
decimales: 7 dı́gitos para el float, 16 dı́gitos para el double.

Para dar un ejempo de números de punto flotante:

1 float pi = 3.141592;
2 double pi = 3.141592653589793;

Definir cualquiera de las variables con más dı́gitos no va a aportar información adicional
porque se escapan de la representación de la mantisa.

Dado que los números flotantes pueden ser absurdamente chicos o grandes, los literales
pueden expresarse en notación cientı́fica: 12.1E5 representa 12,1× 105, es decir 1210000.

3.3.5. void

En la declaración de una función ya vimos que la firma tiene que indicar el tipo de retorno
y de los parámetros. ¿Cómo hacemos en el caso de las funciones que no reciben parámetros o
las que no devuelven valores (también llamadas “procedimientos”)?

1 int f(void) {
2 // No recibe par á metros pero devuelve un entero
3 return 8;
4 }
5

6 void g(void) {
7 // No recibe ni devuelve nada
8 }

void no es un tipo, es la palabra que utilizamos para indicar que no hay devolución o
recepción de ningún valor.
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3.4. Literales

En C todo tiene tipo, incluso los literales. Generalmente no le prestaremos más atención al
tema, pero vale la pena mencionarlo:

1 97 // int
2 97U // unsigned int
3 97L // long
4 97LU // unsigned long
5 97.0 // double
6 97.0F // float
7 ’a’ // int (ASCII 97 = ’a’)
8 ’\x61’ // int (0x61 hex = 97 decimal)

3.5. Operación entre tipos

En un procesador no se admiten operaciones entre tipos mixtos. Todas las operaciones se
hacen siempre entre dos valores del mismo tipo. Ası́mismo el resultado de operar entre dos
valores del mismo tipo es del tipo de los operandos.

Es decir 1 + 2 evaluará a 3 y 1.0 + 2.0 evaluará a 3.0 e internamente el código máquina
utilizará dos operaciones totalmente diferentes del procesador, en un caso la operación de suma
de enteros y en el otro caso la de flotantes de doble precisión.

Tal vez pasó desapercibido el ejemplo pero en la tabla de operadores se dijo que 7 / 2 = 3
y esto cumple con la norma de que el resultado pertenece al tipo de los operandos. Es más:

1 double a = 7 / 2;
2 // a = 3.0

¿Por qué?, por asociatividad de las operaciones, la expresión 7 / 2 se evalúa primero y
evalúa siempre a 3 independientemente del contexto.

Cuando hay dos operandos de diferente tipo entonces el compilador promueve el operando
de tipo “más chico” al tipo del operando de tipo “más grande”. Por ejemplo, en la expresión
1 + 1.2 se tiene un literal de tipo int y un literal de tipo double. El compilador considera que
el tipo doube le gana al tipo int por lo que promueve el 1 a 1.0. Luego evalúa la expresión
1.0 + 1.2 la cual evalúa en 2.2.

El orden de las promociones es el siguiente:
char, short→ int→ unsigned int→ long→ unsigned long→ float→ double
lo cual sigue el orden esperable, tal vez con la salvedad de que los unsigned le ganen a los

signed.
En general podemos pensar que al promover dado que se pasa a un tipo “más grande” no

hay pérdida de información, aunque esto no es del todo cierto. Por ejemplo: 12345678 + 1.0f
→ 1234567e1f + 1.0f→ 1234567e1f2. No nos olvidemos de que los enteros guardan números
más chicos pero con precisión completa a diferencia de los flotantes que guardan números
grandes pero con poca precisión.

Retomando: Por lo general podemos pensar que al promover no hay pérdida de información.
Por el otro lado cuando se convierte un valor de un tipo “más grande” a uno “más chico”

se habla de truncamiento.

2Tomar este ejemplo como un ejemplo conceptual, dado que los float operan en base 2 la cantidad de cifras
decimales no son exactamente 7 si no que depende de cómo es la conversión a binario del valor puntual que además
hará aparecer dı́gitos parásitos. Quedarse con la idea, el resultado real de la operación es mucho más complejo.
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El truncamiento puede o no tener pérdida de información, de hecho ha habido un montón
de ejemplos hasta el momento en este apunte de truncamiento, como por ejemplo signed char
↪→ x = 127; donde pusimos un literal de tipo int, es decir de 32 bits, en una variable de 8
bits. Aquı́ no hay pérdida de información porque la representación binaria de 127 en 32 bits es
00000000 00000000 00000000 01111111, es decir, los bytes que se descartan valı́an todos cero.
Análogamente cuando dijimos float pi = 3.141592; estamos guardando un literal double
dentro de un float, pero alcanza tanto el rango como la precisión.

En C el truncamiento únicamente va a darse al realizar asignaciones sobre variables más
pequeñas. La operatoria entre expresiones sólo va a generar promociones.

Un ejemplo de promociones y truncamientos:

1 int sumar(int a, int b) {
2 return a + b;
3 }
4 // ...
5 double x = sumar (4.8, 5.7);

El parámetro a (int) de la función se inicializa con la expresión literal 4.8 (double), es decir,
hay un truncamiento a 4. Análogamente b = 5. Luego la expresión a + b evalúa a 9 y como la
función es de tipo int se devuelve ese valor. Como x = 9 ahı́ hay una promoción, dado que
queremos guardar un int en un double. Finalmente x vale 9.0.

Paréntesis al margen, cuando se habló de declaración de funciones se utilizó de ejemplo esta
misma función sumar(). La necesidad de que el compilador conozca la firma de las funciones
al momento de compilar una llamada a función es poder ajustar todas las conversiones de
tipos a los que la función requiere. Si al invocar a sumar(4.8, 5.7); no se hubiera provisto
la declaración de la función, el compilador adivinarı́a que la firma es int sumar(double,
↪→ double); y harı́a fallar la compilación al no encontrar una definición que respete esa
firma.

3.6. Conversión explı́cita de tipos

En C podemos forzar la conversión de tipos si lo necesitamos. Esta operación se conoce
como cast (del inglés “amoldar”) o (castellanizando) casteo. Para castear3 una expresión se
antepone el tipo deseado entre paréntesis. Eso va a forzar a la expresión a convertirse al tipo
deseado:

1 int x = 5;
2 int y = 2;
3

4 int a = x / y; // a = 2
5 float b = x / y; // b = 2.0f
6 float c = (float)x / y; // c = 2.5f
7 float d = x / (float)y; // d = 2.5f

3.7. Redefinición de tipos

Supongamos que nos piden escribir el programa para un censo y tenemos que definir qué
tipo de variables vamos a utilizar para almacenar los números. Por ejemplo, si el censo fuera

3Sı́, a los argentinos nos gusta particularmente no sólo incorporar palabras en inglés si no convertirlas en verbos y
después conjugarlas: yo googleo, tú copypasteas, él postea, nosotros ghosteamos, etc. El resto de los paı́ses de habla
hispana nos suele mirar raro.
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un censo barrial me alcanzarı́a con variables de tipo short, si fuera un censo nacional de tipo
int pero si fuera mundial necesitarı́a long. Analizando el problema me surje que para las
necesidades actuales un tipo es más que suficiente pero esas especificaciones podrı́an cambiar a
futuro.

Lo que podemos hacer es crear un nuevo tipo que nos permita abstraernos del tipo:

1 typedef unsigned short cantidad_t;

Esta sentencia crea un “nuevo” tipo cantidad_t que circunstancialmente está declarado
como unsigned short. Luego podemos declarar variables de este tipo:

1 cantidad_t habitantes_san_telmo = 25969;

Si eventualmente necesitáramos redefinir el tipo porque el dominio de mi problema se modi-
ficó, sólo cambiarı́amos la especificación en la lı́nea del typedef por lo nuevo. Automáticamente
todas las variables de tipo cantidad_t se actualizarán.

Ahora bien si bien a veces la necesidad de la redefinición de tipos es para anticiparse a
futuros cambios de especificación, muchas este tipo de construcciones simplemente sirven para
obtener más abstracción en mi código.

Por ejemplo podrı́amos asumir que ninguna persona en el corto plazo va a vivir más de 127
años y más aún más de 255, por lo tanto si tuviéramos que declarar variables para almacenar
edades tranquilamente podrı́amos utilizar alguna variante de char. Ahora bien, en mi programa
no todas las variables de tipo char van a representar una edad y las edades no van a destacarse
como un tipo en sı́. Si quisiéramos ganar en abstracción

1 typedef unsigned char edad_t;

generarı́a un nuevo tipo para abstraer el tipo base de las edades. No hay necesidad de redefinir
el tipo a futuro, simplemente consideramos que es más abstracto declarar una variable edad_t
↪→ edad_juan; que unsigned char edad_juan;.

3.8. printf()

Hemos dicho que el primer parámetro de printf() es una cadena de formato la cual
la función utiliza para saber qué cosas va a imprimir después. También hemos visto que
utilizando " %d" como formato podı́amos imprimir números. Ahora bien, no dijimos que " %d"
es exclusivamente para imprimir números int en formato decimal.

printf() tiene una amplia variedad de modificadores de formato, como por ejemplo:

1 printf(" %d␣ %f␣ %c␣ %s\n", 42, 3.14, ’x’, "hola");

define el formato de un int, un float/double, un carácter (los cuales son int lo vimos cuando
vimos literales) y una cadena de caracteres. La salida de esta lı́nea será "42␣3.140000␣x␣hola\
↪→ n".

Estos no son los únicos, no sólo hay más modificadores si no que hay un montón de
opciones que se pueden manipular en la cadena de formato para imprimir los números
alineados, ocupando cierta cantidad de dı́gitos, rellenando con ceros, con el signo explı́cito,
etcétera, etcétera, etcétera. En el sitio web del curso hay un apunte llamado “Los Secretos de
printf()” de Don Colton, el cual cubre exhaustivamente las diferentes opciones disponibles.
Ese apunte es de lectura obligatoria.
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Capı́tulo 4

El proceso de compilación

Si bien hasta ahora hablamos de la compilación como si se tratara de un proceso monolı́tico,
esto no es ası́ en C. El proceso de compilación consta de varias etapas diferentes y necesitamos
entender cada una de ellas para construir nuestro programa y solucionar los problemas que
surjan.

El proceso de compilación se divide en tres etapas diferentes: Preprocesamiento, compilación
y enlace. Entre las 3 se produce la transformación de nuestro fuente .c a un ejecutable.

Preprocesador: El preprocesador es el responsable de la etapa previa a la compilación. Es
un programa sencillo que principalmente sabe hacer reemplazos y activar u ocultar
fragmentos del código. Las instrucciones del preprocesador empiezan todas con #. Por
ejemplo ya vimos la instrucción #include, la misma busca el archivo con la ruta indicada,
lo abre, copia su contenido y lo pega completo en el lugar en el que estaba la lı́nea del
#include. Ya vimos que eso servı́a para, entre otras cosas, traer la declaración de la
función printf(). Al proceso de preprocesamiento entra un fuente .c limpio, como lo
generó el programador, y sale un fuente expandido con cosas autogeneradas e información
de las bibliotecas.

Compilador: El compilador es el responsable de traducir código fuente en código máquina. El
compilador analiza sintácticamente cada una de las instrucciones sentencias de nuestro
programa y decide la mejor secuencia de pasos de assembly que resuelven eso en nuestra
arquitectura. La salida del compilador se llama “código objeto” y es ya prácticamente
código máquina. Es importante destacar que durante la compilación sólo el código que
nosotros escribimos es compilado.

Enlazador: El enlazador o linker es es programa encargado de generar el ejecutable final. El
código objeto que compilamos tiene nuestra parte del programa, pero para que nuestro
programa sea funcional seguramente utilizamos funciones de biblioteca que nosotros
no implementamos. El enlazador puede tomar múltiples códigos objeto y bibliotecas y
estructurar un único programa. En ese proceso enalaza las llamadas a función que nosotros
hayamos hecho, por ejemplo printf() con el lugar donde esté realmente el código
máquina de dicha función. Además en este proceso es que el programa se estructura para
ser un ejecutable, es el enlazador el que define el punto de entrada y verifica que haya un
y sólo un main().

La idea de que el proceso de compilación de C no sea monolı́tico permite estructurar
proyectos de software más complejos que veremos mucho más avanzados en la materia. A
esta altura es importante sı́ entender cómo es que nuestro código se integra con las utilidades
del compilador. En la etapa de preproceso incluı́mos los archivos de encabezados .h que nos
dicen cómo es la firma de las funciones de biblioteca, lo cual ya es suficiente para encarar la
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compilación, mientras que el código máquina de esas funciones se incorpora recién en el último
paso de enlace donde recibimos código en forma de código objeto .o o de bibliotecas .lib, .so,
.dll, etc.

Cabe destacar que el único proceso realmente caro de la compilación es justamente la
compilación. Tanto el preprocesador son programas muy sencillos que hacen operaciones
rutinarias. Este diseño de C que permite compilar pequeños fragmentos de forma individual y
luego juntarlos hace que el proceso sea muy eficiente.

4.1. Interpretando la salida del compilador

Parte importante de la programación en cualquier lenguaje es entender al compilador
respectivo. En cierta medida es el compilador el que tiene la última palabra al respecto de la
sintaxis de un código y el compilador intenta decirnos qué es lo que no es correcto en nuestro
programa.

Miremos el siguiente código:

hola.c

1 # include <stdio.h>
2

3 int main(void) {
4 print("Hola␣mundo\n");
5 return 0;
6 }

El mismo tiene un error de tipeo, escribimos print() en vez de printf(). Ahora tomate
el tiempo que necesites, poniendo sobre la mesa todas las cosas que ya presentamos en este
apunte, para pensar qué y cómo va a fallar durante el proceso de compilación. ¿Qué va a hacer
el preprocesador?, ¿qué va a hacer el compilador?, ¿qué va a hacer el enlazador?, ¿vamos a
llegar a la etapa de compilación o de enlace o muere primero?

Pensalo, en serio. Es la forma de autoevaluar si estás entendiendo el contenido, o sea,
si podés bajar la teorı́a a la práctica. Si no tenés ni idea de lo que estamos hablando leer la
explicación que viene a continuación no te va a aportar nada desde el punto de vista pedagógico.
Esto aplica para este ejemplo y para todo el curso.

Bueno, retomando, nada que pongamos en nuestro código deberı́a afectar al procesador, a
menos que queramos incluir un archivo inexistente o algo por eel estilo.

El compilador va a atacar nuestro código, ¿hay algo malo con la sintaxis de nuestro código?
La realidad es que no, tenemos un main() bien estructurado que llama a una función print().
Sı́ hay un detalle importante, nadie proveyó la definición de la función print() porque no
forma parte de los prototipos que importamos desde stdio.h ni tampoco dimos una definición
o declaración de función. ¿Qué hacı́a el compilador cuando se topaba con funciones que no
conocı́a? Eso ya lo vimos: asumı́a de lo que veı́a, en este caso va a asumir que la función
tiene firma int print(char *);1, es decir, una función que recibe una cadena de caracteres y
devuelve un entero. Una vez hecha esa asunción el compilador generará el código para llamar
a esa función que se imaginó.

Eso sı́, si bien el compilador puede hacer su trabajo, probablemente considere que tiene que
avisarme de la decisión que tomó. En este caso, el GCC dirá algo del estilo de:

hola.c: In function ‘main’:
1¿Qué es esa cosa de char *? Cuando estamos aprendiendo la curiosidad es súper positiva, pero en esta materia

vamos a decepcionarte mucho al punto que no vas a querer sentirla. La respuesta a cualquier cosa nueva la mayor
parte de las veces va a ser “Te juro que no querés saber”. Si te hace feliz, digamos que char * vendrı́a a ser el tipo de las
cadenas de caracteres.
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hola.c:4:5: warning: implicit declaration of function ‘print’; did you mean
‘printf’? [-Wimplicit-function-declaration]

print("Hola mundo\n");
ˆ˜˜˜˜
printf

Apunte al margen: El idioma de la ingenierı́a es el inglés. Esto no es una preferencia nuestra,
lamentablemente es lo que hay. Si todavı́a no sabés inglés, deberı́as empezar a aprenderlo. No
lo vas a necesitar para esta materia, pero lo vas a necesitar en todas las materias más avanzadas
de la carrera. En nuestro caso no es que el compilador tiene infinitos mensajes en la mochila, te
vas a topar con una veintena y más difı́cil que el inglés es aprender qué cosas rotas en nuestro
código son las que disparan cada uno de esos mensajes y cómo solucionarlos.

Lo primero al respecto de este mensaje es que es una advertencia (warning) no un error.
El mensaje dice “declaración implı́cita de la función print” lo cual significa “nadie me dió
su firma, estoy adivinando”. Además nos dice “¿no quisiste decir printf?”, cuidado con esas
sugerencias, la mayor parte de las veces no son correctas.

Retomando, el compilador genera un código objeto con el código máquina necesario para
llamar a int print(char *); y es el enlazador el que tiene que buscar ese código máquina, el
cual obviamente no existe.

Esta es la salida a continuación de la compilación:

/tmp/ccaNYwA8.o: En la función ‘main’:
hola.c:(.text+0x11): referencia a ‘print’ sin definir
collect2: error: ld returned 1 exit status

ld es particularmente el ejecutable del linker del GCC. Los mensajes de enlazador se
distinguen rápido de los del compilador en que los de compilador conocen el código fuente, es
decir, nos dicen “en la lı́nea tanto de tal código encontré esta sintaxis”, ahora bien, al enlazador
le llega código máquina, no conoce nuestro código fuente, por lo que sus mensajes son más del
estilo de “en este archivo, en tal posición de memoria”, en este caso en hola.c:(.text+0x11).
El mensaje es claro: No existe print(). Más allá de que acá sabemos cuál es el error desde el
principio no encontrar una función puede ser un error de tipeo, puede ser que la función no
existe, puede ser que me olvidé de incluir alguna biblioteca (biblioteca 6= encabezado).

Observación al margen: Nos está diciendo literalmente ld devolvió1 como estado de
↪→ salida. Ahı́ tienen la convención return 0; =⇒ todo bien, cualquier cosa diferente de 0
=⇒ error.

4.2. Parámetros del compilador

En nuestro primer acercamiento al compilador compilamos el hola mundo sencillamente
como

$ gcc hola.c -o hola.exe

ahora bien, hay más cosas que prestar atención en el proceso de compilación y este es el
momento de introducirlas.

4.2.1. Estándar

Como ya dijimos en este curso vamos a desarrollar C según el estándar ISO-C99. ¿Por
qué es que es importante programar dentro de determinado estándar? Se trata de un tema
de portabilidad. Nosotros queremos escribir en un lenguaje de alto nivel porque queremos
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independizarnos de la plataforma. Para poder independizarnos de ella necesitamos tener
compiladores para las plataformas donde queramos ejecutar nuestro código. Utilizar estándares
garantiza eso, no vamos a atarnos a lo que, por ejemplo, el compilador GCC considere que es el
lenguaje C sino que vamos a decirle al GCC que nuestro código es compatible con el estándard
C99. Si quisiéramos cambiar de compilador a cualquier otro sólo deberı́amos verificar que sea
uno que cumpla con ese estándar y ya.

El GCC particularmente conoce muchos estándares y no sabe a priori cuál queremos utilizar
nosotros. Cosas que en una versión de C son correctas en otra no, incluso hay comportamientos
que son diferentes según la versión. Queremos asegurarnos de no introducir cosas que no
pertenezcan a C99.

Para eso debemos agregar en la lı́nea de compilación -std=c99, y más aún, obligamos a un
cumplimiento más estricto agregando -std=c99 -pedantic.

4.2.2. Advertencias

Las advertencias del compilador nos avisan de posibles errores semánticos, dado que si
fueran sintácticos no habrı́a compilación. El 99,9 % de las veces que el compilador identifica
algo para advertirnos eso se corresponde con un error en nuestra lógica. Las advertencias son
importantes y en este curso no aceptaremos código que tenga advertencias al compilar.

Ahora bien, el compilador elige sobre qué cosas mostrarnos advertencias o no. Para activar
todas las advertencias del compilador tenemos que agregar -Wall.

Si quisiéramos ser mucho más estrictos podrı́amos pedirle al compilador que directamente
trate a las advertencias como si fueran errores con -Werror.

4.2.3. Biblioteca matemática

Por razones históricas la biblioteca de C está partida en dos: La libc y la libm. La libm
tiene todas las funciones de manipulación de números de punto flotante, es decir, la biblioteca
matemática, mientras que la libc tiene el resto. En muchas versiones de compilador por omisión
no se enlaza con la libm.

Para agregar a la biblioteca matemática al momento de enlace hay que agregar -lm como
último parámetro de la lı́nea de compilación.

4.2.4. Entonces

La lı́nea completa recomendada para compilar un programa es:

$ gcc hola.c -o hola -std=c99 -pedantic -Wall -lm

4.3. Constantes

En nuestro código muchas veces necesitamos tener valores de constantes. Las contasntes a
veces pueden ser valores universales como por ejemplo el valor de π y otras veces pueden ser
cosas constantes a nuestro programa, como por ejemplo la cantidad de paı́ses en el mundo, que
si las quisiera modificar deberı́a recompilar mi programa.

Tomemos de ejemplo π, sabemos que un float soporta aproximadamente 7 dı́gitos deci-
males representativos. Es decir cada vez que necesitemos el valor de π deberı́amos escribir
3.1415926f2. Escribir más números serı́a innecesario, escribir menos introducirı́a error en las

2Pusimos 8 dı́gitos porque ya se dijo es aproximadamente 7, no sabemos si el último se contabiliza, pero es preferible
estar del lado de la seguridad.
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operaciones. ¿Vamos a escribir ese número cada vez?, ¿y si mañana decidimos migrar de float
a double tenemos que reemplazar todas las ocurrencias por ese valor?

Reemplazar las ocurrencias de 3.1415926 por otro valor es más o menos automatizable.
Ahora bien, ¿qué pasarı́a si hicimos un programa en un momento en el que el mundo tenı́a 100
paı́ses y, como la provincia de Córdoba finalmente se independizó, deberı́amos actualizar ese
número a 101? ¿Estamos seguro que todo 100 en mi programa se correspondı́a con la cantidad
de paı́ses y no es resultado de otra cosa, como por ejemplo, la nota máxima para calificar en
Quı́mica, el punto de hervor del agua en grados Celsius, la conversión entre pesos y centavos o
el cálculo de un porcentaje?

Bueno, para todas esas cosas necesitamos constantes. La idea es definir una constante una
única vez, en un solo lugar, ponerle un nombre y usar ese nombre donde haga falta. No sólo va
a mejorar la mantenibilidad si el dı́a de mañana quiero modificar una cantidad, además va a
ganar mucho en legibilidad porque en una fórmula veré un nombre que me habla del número
de paı́ses en vez de una cifra suelta que no sé qué significa.

El lenguaje C provee dos maneras diferentes de generar constantes. Una es dentro del código
de C y la otra es mediante el procesador.

4.3.1. Variables constantes

1 const float pi = 3.1415926;

Declara y define una variable de tipo float que se llama pi y es constante. ¿Variable
constante no es un oxı́moron?...

Repasemos el concepto de declarar y definir una variable: El compilador busca memoria del
sizeof necesario. Le pone un nombre a esa memoria. Escribe en esa memoria la representación
binaria de ese valor. Luego cada vez que en una expresión utilice pi eso evaluará a ir a buscar
ese valor a la meoria.

Una variable constante tiene todo eso, con la restricción de que tengo que definirla en
tiempo de declaración y que luego no puedo modificar ese valor. Cualquier intento que haga
de redefinir pi será un error de compilación.

En C se pueden declarar variables constantes y esto puede hacerse fuera de las funciones, al
comienzo del programa y esas variables estarán disponibles para utilizar en todas las funciones.

Ahora bien, esta no es la manera más común de resolver el tema de los valores constantes
en C.

Aclaración: En este curso no se permite bajo ningún punto de vista la existencia de variables
fuera de las funciones (i.e. globales) que no sean de tipo const.

4.3.2. Etiquetas

Dijimos ya varias veces que el preprocesador es una máquina de reemplazar cosas por cosas.
La instrucción

1 # define PI 3.1415926f

define a la etiqueta PI con el valor que sigue a continuación (notar la ausencia de operador de
asignación y de punto y coma). En el proceso de preproceso cada vez que el preprocesador vea
la etiqueta PI en el código la reemplazará por el valor literal 3.1415926f3.

Al compilador no le llegará el PI, le llegará directamente 3.1415926f. No hay memoria
asociada, no hay variables, no hay nada, sólo lo mismo que si hubiéramos escrito el valor de π
donde lo necesitábamos.

3¿Por qué pusimos la f en la etiqueta pero no en la variable constante? Porque en el caso de la variable al ser la
variable float la asignación se trunca a ese tipo y al utilizar pi se utilizará como float. En el caso de la etiqueta al ser
un literal suelto si queremos que sea float tenemos que darle el tipo al literal.
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Convención (importantı́simo): En C se utilizan mayúsculas si y sólo si estamos declarando
una etiqueta. Esta es una convención fuertı́sima del lenguaje. Si vemos un identificador en
mayúsculas vamos a asumir inmediatamente que se trata de un #define. Todas las etique-
tas tienen que estar en mayúsculas y todos los identificadores de variables y funciones en
minúsculas.

Y con las etiquetas completamos la colección: Los archivos de encabezados de C contienen
básicamente declaraciones de funciones, redefiniciones de tipos con typedef y finalmente
etiquetas con #define. Eso es lo que traemos de la biblioteca cuando hacemos un #include.
Notar que son todas cosas que no definen funcionalidad si no que le avisan al compilador de
qué cosas tiene disponibles para utilizar.
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Capı́tulo 5

Control de flujo

Hasta ahora desarrollamos programas donde de forma secuencial se ejecutan todas y
cada una de las lı́neas del mismo una única vez. Llamamos control de flujo a las estructuras
del lenguaje que nos permiten repetir instrucciones o ejecutar bloques de código de forma
condicional.

5.1. El ciclo while

El ciclo while nos permite repetir un bloque de código mientras una condición sea verdadera.
Por ejemplo:

1 # include <stdio.h>
2

3 int main(void) {
4 int i = 1;
5 while(i <= 10) {
6 printf("Hola\n");
7 i++;
8 }
9 printf("Chau\n");

10 return 0;
11 }

El encabezado de la instrucción while lleva entre paréntesis una condición. Cada vez que se
ejecute el while se evaluará esa condición, si la misma fuera verdadera entonces se ejecutará el
bloque siguiente. Luego de ejecutar el bloque se evaluará la condición y se seguirá repitiendo
esta secuencia. Si al evaluar la condición la misma fuera falsa, se seguirá ejecutando lo que siga
a continuación del bloque.

En nuestro ejemplo comenzamos con la variable i valiendo 1. En la primera iteración se
preguntará si i es menor o igual a 10. Dado que 1 es menor o igual a 10 la condición será
verdadera. Entonces se ejecutará el bloque. El bloque hace dos cosas: Primero imprime "Hola\n"
y luego incrementa el valor de i, por lo que la primera iteración terminará con i valiendo 2.
Acto seguido se evaluará de vuelta la condición, como i sigue siendo menor o igual que 10 se
ejecutará el mismo bloque de nuevo, y esto seguirá pasando 9 veces más hasta que después de
imprimir "Hola\n" por décima vez i será incrementado una vez más y valdrá 11. Al volver a
evaluar i <= 10 esta vez esa expresión será falsa y el while terminará. Al terminar el while se
imprimirá "Chau\n" y luego terminará el programa.
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Más adelante hablaremos de qué caracterı́sticas tienen estas expresiones que dan “verdadero”
o “falso” y cuáles son los operadores que tenemos disponibles además de <=.

5.2. Bloques

Como se dijo anteriormente después de una instrucción de control de flujo viene un bloque.
Ya vimos cuando hablamos de instrucciones que los bloques en C se delimitan entre { y

}. Ahora bien, esto es para generar bloques de múltiples instrucciones. Una única instrucción
también constituye un bloque, por lo que si tuviéramos por ejemplo un while que podrı́a
resolverse con una única lı́nea podrı́amos omitir las llaves. Por ejemplo:

1 int i = 0;
2 while(i < 10)
3 printf(" %d\n", i++);

imprimirá 0, 1, 2, ... 9 y terminará.
Otra cosa importante de los bloques es la indentación del código. Cuando anidamos un

bloque dentro de otro bloque debemos incrementar la sangrı́a. En nuestro ejemplo de la sección
anterior la función main() constituye un bloque por lo que su código está indentado un nivel de
sangrı́a con respecto al #include o a la declaración de la firma del main(). Ahora bien, cuando
dentro de la función main() iniciamos un bloque while volvemos a incrementar la sangrı́a de
todo lo que está dentro de él.

La sangrı́a es invisible al compilador y a la sintaxis del lenguaje y podrı́amos no utilizarla.
Pero es obligatoria para poder entender el alcance de los bloques de un código fuente al leerlo
y no aceptaremos códigos que no estén correctamente indentados. La sangrı́a es tan importante
que hay lenguajes posteriores a C que no necesitan las llaves para marcar bloques sino que
se guı́an pura y exclusivamente por la indentación. Es decir, convirtieron algo que era una
convención de estilo en sintaxis del lenguaje.

5.3. El ciclo for

En programación son muy comunes las iteraciones en las cuales antes de empezar el bucle
hay que inicializar un valor y después de ejecutar el bloque hay que hacer una actualización
para la siguiente iteración. De hecho el ejemplo de saludar 10 veces que ya hicimos tiene esa
estructura.

Dado que este patrón es muy frecuente, el lenguaje C provee una instrucción de flujo que
está pensada especı́ficamente para estos casos:

1 # include <stdio.h>
2

3 int main(void) {
4 for(int i = 1; i <= 10; i++)
5 printf("Hola\n");
6 printf("Chau\n");
7 return 0;
8 }

funciona idénticamente al ejemplo que dimos de while. La instrucción for tiene 3 parámetros
(¡que se separan con ;!): Una inicialización, la condición de corte y un incremento, en este
ejemplo int i = 1, i <= 10 y i++ respectivamente.

La única diferencia operativa entre este ejemplo de for y el ejemplo del while es que en
este caso la variable i existe únicamente dentro del for, mientras que en el otro ejemplo estaba
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declarada en el main() y era visible en toda la función. Si necesitáramos persistir la variable de
iteración fuera de un for deberı́amos declararla antes del mismo.

Si el while y el for hacen lo mismo o son intercambiables entre sı́, ¿vamos a usar los dos?,
¿vamos a preferir uno sobre el otro? La idea es que siempre que tengamos una iteración donde
se observe el patrón de inicialización previa e incremento posterior vamos a preferir usar for.
Es un tema de estilo: En la lectura de la instrucción entendemos por completo cuál va a ser
el comportamiento completo del bloque, incluso aunque este sea muy largo y no veamos su
totalidad. Vamos a dejar el while para iteraciones más libres donde el comportamiento de la
iteración va a depender de cosas menos definidas.

5.4. El ciclo do-while

Como con dos iteradores no alcanzaba, existe además el ciclo do-while que es una variante
del while:

1 int n = 7;
2

3 do {
4 printf(" %d\n", n);
5 n /= 2;
6 } while(n > 0);

Imprimirá 7, 3, 1.
¿Cuál es la diferencia con el while? Que como primero se ejecuta el bloque y luego se

verifica la condición el ciclo do-while garantiza que el bloque se ejecute al menos una vez. En
el ciclo while si la condición es falsa desde el inicio nunca se ejecutará el bloque. Una vez que
se ejecutó la primera iteración el comportamiento de while y do-while es el mismo dado que
ambos son una sucesión de ejecutar bloque, validar corte.

El do-while se usa bastante poco, dado que el patrón que plantea no es muy común. Suele
ser conveniente por ejemplo para operaciones de interacción con algo externo: Obtengo un dato
y mientras el dato no valide determinado criterio vuelvo a pedirlo. Como pedirlo y volver a
pedirlo seguramente se haga de la misma forma, con do-while garantizo que al menos se pida
una vez y no duplico el código del pedido como tendrı́a que hacerlo con while.

5.5. Booleanos

Cuando hablamos de la condición de corte del while, el for y el do-while dijimos que era
expresiones que evaluaban a valores de verdad o falsedad. Este tipo de operaciones se conocen
como operaciones booleanas, y derivan del álgebra de Boole denominada ası́ por el matemático
George Boole (1815-1864) que la definió. En este tipo de álgebra tiene la particularidad de que
se opera sobre conjuntos muy pequeños de valores, en nuestro caso únicamente dos.

La lógica booleana es inherente a la electrónica digital, área dentro de la cual se encuentran
los procesadores. Lo que define este álgebra es un conjunto de operaciones que nos permite
operar sobre dispositivos que admiten dos estados: prendido-apagado, magnetización positiva-
negativa, tensión de 0V-5V, etc. que son la base de los circuitos digitales. Particularmente en
computación pensamos en estados de verdadero-falso.

5.5.1. Booleanos en pre ISO-C99

Si bien la lógica booleana es parte fundamental de la programación C no tenı́a un tipo para
representar a los booleanos en su comienzo, y en realidad durante casi 30 años desde creado. Si
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bien el lenguaje siempre tuvo operadores que devolvı́an valores booleanos y operaban sobre los
mismos, originalmente no se pensó en contenerlos dentro de un tipo.

Para el lenguaje C anterior al estándar C99 cualquier expresión entera podı́a ser vista como
un valor booleano. La convención era sencilla: El valor 0 evaluaba a falso mientras que cualquier
otro valor evaluaba a verdadero. Es decir, si uno operaba una expresión booleana como por
ejemplo 5 < 10 esta expresión hubiera evaluado a cualquier valor arbitrario diferente a cero,
por ejemplo -4654. Uniendo esto con las secciones anteriores, básicamente cuando uno utiliza
una instrucción de tipo while(condicion) se ejecutará el bloque siempre y cuando la expresión
condicion evalúe a un número diferente a cero.

Por ejemplo el código

1 for(int i = 10; i > 0; i--)
2 printf("Hola\n");

tendrá el mismo comportamiento que el código

1 for(int i = 10; i; i--)
2 printf("Hola\n");

En ambos casos se imprimirá 10 veces "Hola\n". Dado que i empieza la iteración en 10
y va a ir decrementando de a una unidad será una sucesión 10, 9, 8, ... Con estos valores la
expresión i > 0 evaluará a verdadero hasta que i alcance el valor de 0, donde evaluará a falso.
Del mismo modo, la expresión i mirada desde su verdad o falsedad booleana va a evaluar
verdadera hasta que i valga 0 dado que 0 es el único entero que se considera falso. Ambas
condiciones son equivalentes en el contexto de esta iteración1.

5.5.2. Booleanos en ISO-C99

Cuando en el estándar C99 decidieron introducir finalmente variables de tipo booleano
lo hicieron de tal manera de no romper los programas de los 30 años anteriores. Por lo que
tomaron una serie de soluciones de compromiso que extienden el comportamiento original de
C sin dejar de ser intuitivas para los que codifiquen código ya pensando en el estándar nuevo.

Como bien dijimos independientemente de que el lenguaje C tuviera o no variables booleanas
los programadores siempre las utilizaron, por lo que es común que en cualquier código viejo
hayan definido algún tipo booleano con typedef o generado sı́mbolos para verdadero y falso
con #define o equivalentes.

Para no chocar con código del usuario los booleanos se implementan con un tipo nativo
llamado _Bool (que no utilizaremos nunca, pero mencionamos sólo por completitud).

El cambio que implementa el lenguaje es que ahora los operadores booleanos devuelven 0 o
1. Es decir, en el estándar C99 la operación 5 < 10 que vimos anteriormente va a devolver 1.
Y básicamente este es el único cambio que se introdujo. Todo lo que dijimos respecto al pre
ISO-C99 sigue valiendo, cualquier entero puede interpretarse como booleano, cualquier entero
diferente de cero se interpretará como verdadero mientas que el cero se interpretará como falso.
Pero ahora los operadores devuelven sólo 0 y 1.

Como dijimos anteriormente, se introdujo un nuevo tipo _Bool, pero también dijimos que
no ı́bamos a utilizarlo. En su lugar si vamos a utilizar booleanos lo que haremos será incluir
el encabezado stdbool.h. El contenido de este encabezado podemos resumirlo básicamente
como:

1 typedef _Bool bool;
2 # define false 0
3 # define true 1

1Fuera del contexto de esta iteración pueden no serlo, es decir, la expresión booleana i siempre es equivalente a la
expresión booleana i != 0, no a i > 0 como en el ejemplo.
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O sea, nos da un tipo bool y nos da las etiquetas true y false2. Nosotros siempre vamos a
utilizar el tipo con este #include.

5.5.3. Operadores

Como ya vimos, hay operadores que dadas expresiones numéricas nos devuelven valores
booleanos, la lista completa de ellos es:

==: La igualdad. Ejemplo: 1 + 1 == 2, evaluación true.

!=: La desigualdad. Ejemplo: 1 + 1 != 2, evaluación false.

<: Menor que. Ejemplo: 1 + 1 < 2, evaluación false.

<=: Menor o igual que. Ejemplo: 1 + 1 <= 2, evaluación true.

>: Mayor que. Ejemplo: 1 + 1 > 2, evaluación false.

>=: Mayor o igual que. Ejemplo: 1 + 1 >= 2, evaluación true.

Todos estos operadores toman expresiones enteras o de punto flotante y devuelven valores
booleanos.

Luego están los operadores que toman expresiones booleanas3 e implementan funciones
lógicas sobre ellas. Estos operadores son: && (and), || (or) y ! (not).

El operador && (and)

El operador and del álgebra de Boole (de sı́mbolo ∧ en lógica proposicional) pregunta si sus
dos operandos son verdaderos, o sea si a y b son verdaderos.

Su tabla de verdad es:
a b a && b

false false false
false true false
true false false
true true true

Es decir, sólo devolverá true si ambos operandos son true.

El operador || (or)

El operador or del álgebra de Boole (de sı́mbolo ∨ en lógica proposicional) pregunta si alguno
de sus operandos es verdadero, o sea si a o b son verdaderos (de forma inclusiva).

Su tabla de verdad es:
a b a && b

false false false
false true true
true false true
true true true

Es decir, sólo devolverá false si ambos operandos son false.

2¿Cómo?, ¿que las etiquetas no tenı́an que estar siempre en mayúsculas? Bueno, las que ponés vos sı́. El tipo que
escribe estándares las pone como quiere.

3Y no olvidar que en C las expresiones booleanas pueden ser true, false y el resultado de operar alguno de los
operadores anteriores, pero también cualquier expresión entera en general.
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El operador ! (not)

El operador not del álgebra de Boole (de sı́mbolo ¬ en lógica proposicional) es un operador
monario que invierte el valor de su operando, o sea devuelve no a.

Su tabla de verdad es:
a ! a

false true
true false

5.5.4. Cortocircuito

Supongamos la siguiente expresión booleana: 1 + 1 == 3 && (! 8 % 6 != 0). ¿Podés
darte cuenta rápidamente a cuánto evalúa esa expresión en su conjunto? Bueno, la respuesta de-
berı́a ser sı́. 1 + 1 == 3 obviamente evalúa a false, ¿y (! 8 % 6 != 0)?, bueno, básicamente
a nadie le importa a cuánto evalúa esa expresión. Si ya dijimos que el único caso en el que el
operador and evalúa a true es si ambos operandos evalúan a true y ya estamos viendo que
el primero de los dos operandos evaluó a false sabemos que la expresión completa evalúa a
false4.

El lenguaje C entiende el funcionamiento del and y el or y no se toma el trabajo de evaluar
el segundo operando si con la evaluación del primero ya le alcanza para definir el resultado de
la evaluación global. Este comportamiento se conoce como cortocircuito.

En la sección que hablamos de precedencia y asociatividad dijimos que en el lenguaje C no
estaba garantizado el orden de evaluación de las expresiones. Bueno, no está garantizado el
orden de evaluación salvo para and y para or. En el caso de and y or el orden de evaluación es
siempre de izquierda a derecha.

Por ejemplo, si tuviéramos:

1 while(n < 0 || sqrt(n) > 10) {
2 ...
3 }

nunca se calcuları́a una raı́z negativa. Si n fuera negativo eso ya es suficiente motivo para
concluir hay que ejecutar el bloque del while. Sólo se computarı̀a la raı́z si n fuera positivo y
todavı́a hubiera que evaluar el segundo operando para saber el resultado global del ||.

5.6. El condicional if

Muchas veces en nuestro código queremos ejecutar algo o no, una única vez, dependiendo
de una condición. Para esto tenemos la instrucción if:

1 int main(void) {
2 float n;
3 // ...
4

5 if(n < 0) {
6 printf("No␣podemos␣calcular␣ra ı́ces␣negativas !\n");
7 return 1;
8 }
9

10 printf("La␣ra ı́z␣de␣ %f␣es␣ %f\n", n, sqrt(n));
11

4Y si te queda la duda (! 8 % 6 != 0) evalúa a false. ¿Por qué?, analizalo, tenés todas las herramientas para
hacerlo y es un buen ejercicio.
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12 return 0;
13 }

El if fuerza una ejecución condicional, sólo se ejecutará el bloque si la condición evalúa a
true.

Y dicho sea de paso: Bienvenidos a nuestro primer main() que devuelve algo diferente de 0.
No sabemos de dónde salió el valor de n pero si mi programa sirve para calcular raices y tengo
un valor negativo mi programa no puede hacer lo que tiene que hacer y fallará con un código
de error.

Volviendo, if(condicion) significa “si la condicion es verdadera hacé esto”. Muchas veces
si la condición es verdadera queremos hacer determinada cosa, pero si es falsa queremos hacer
otra cosa diferente de forma excluyente. Para eso sirve el else. Toda instrucción if puede tener
un else de forma opcional:

1 if(n >= 0)
2 printf(" %fˆ0.5␣=␣ %f\n", sqrt(n));
3 else
4 printf(" %fˆ0.5␣=␣ %fi\n", sqrt(-n));

El else se interpreta como “si no”, es decir, “si n >= 0 ejecutá el primer bloque, si no ejecutá
el segundo”. Notar que el else al ser excluyente con el if es en cierta medida equivalente a un
if(! (n >= 0)), o sea, se entra al else si no se entró al if... equivalente pero no igual, porque
la condición se evalúa una única vez al evaluar el if. No importarı́a que dentro del bloque del
if se modificara el valor de n, si entra al if no entra al else y viceversa: Son excluyentes.

Volvamos dos ejemplos más atrás, al ejemplo del if. Verificábamos que n fuera positiva para
decidir si calcular o no una raı́z... ¿no deberı́amos haber usado else para calcularla? No, porque
el bloque if terminaba con un return. Es decir, si entrábamos al bloque del if la función se
abortaba, por lo tanto todo lo que continúe al bloque del if se va a ejecutar sı́ y solo sı́ no se
entró al if. El “si no” está implı́cito al terminar el if con return. Y dado que el else serı́a
redundante no lo escribimos (y en la siguiente sección vamos a argumentar fuertemente en
contra de escribirlo).

Dado que el else requiere un bloque, ese bloque puede ser cualquier cosa y particularmente
puede ser otro if. Cuando tenemos condiciones mutuamente excluyentes podemos encadenar
tantos bloques if-else como queramos. Por ejemplo:

1 if(nota < 4)
2 printf("Reprobado\n");
3 else if(nota < 7)
4 printf("Bien\n");
5 else if(nota < 10)
6 printf("Muy␣bien\n");
7 else
8 printf("Sobresaliente\n");

El último else, como todo else es optativo. Lo importante a remarcar de esta construcción
es que cada una de las ramas es excluyente con la anterior. Es decir no es que va a entrar al
segundo if si nota < 7 evalúa positivo la condición para entrar es (! nota < 4)&& nota < 7
o, dicho de otra forma, nota >= 4 && nota < 7. Sólo se va a preguntar si la nota es menor a 7
si antes se descartó que no fuera menor a 4.
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5.7. Early return

Los programas de la vida real frecuentemente tienen que hacer muchas validaciones previo
a realizar la acción primaria que necesitan hacer.

Imaginemos que tenemos que realizar una transferencia bancaria:

1 resultado_t transferir (...) {
2 resultado_t resultado = EXITO;
3 if(existe(origen)) {
4 if(existe(destino)) {
5 if(saldo(origen) >= cantidad) {
6 if(mensaje != VACIO) {
7 _transferir(origen , destino , cantidad , mensaje

↪→ );
8 } else {
9 resultado = ERROR_MSJ_VACIO;

10 } else {
11 resultado = ERROR_SALDO;
12 } else {
13 resultado = ERROR_DESTINO;
14 } else {
15 resultado = ERROR_ORIGEN;
16 }
17 return resultado;
18 }

Es decir, para realizar una transferencia necesitamos que exista la cuenta de origen, la de
destino, que el saldo sea sufiente y que haya un mensaje5; cualquier otro caso será un error.

Ahora bien, este patrón de validaciones anida indefinidamente if adentro del if anterior
de forma sucesiva y se hace muy difı́cil seguir qué else se corresponde con cada if.

Miremos qué pasa si cambiamos la estrategia:

1 resultado_t transferir (...) {
2 if(! existe(origen))
3 return ERROR_ORIGEN;
4

5 if(! existe(destino))
6 return ERROR_DESTINO;
7

8 if(saldo(origen) < cantidad)
9 return ERROR_SALDO;

10

11 if(mensaje == VACIO)
12 return ERROR_MSJ_VACIO;
13

14 _transferir(origen , destino , cantidad , mensaje);
15 return EXITO;
16 }

¿No mejora muchı́simo la legibilidad?, ¿ahora no es inmediato entender qué validación dis-
para qué código de error?, Si tuviéramos que agregar una validación adicional, ¿no tendrı́amos

5Y si bien hay un && implı́cito entre todas las condiciones no podemos usarlo porque si no no podrı́amos retornar el
código de error correspondiente.
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que tocar mucho menos código? (donde tocar mucho código implica tener más chances de
equivocarse)

¿Qué fue lo que cambiamos entre el primer código y el segundo? Bueno, de eso se trata
el patrón de early return, o “return temprano”: Si ya sabemos el resultado de la ejecución de
la función entonces no seguimos adelante con la función. Interrumpimos el flujo de la misma
inmediatamente. No hace falta esperar.

Como dijimos, los programas de la vida real tienden a requerir múltiples validaciones antes
de procesar un resultado. La estrategia para tener un early return es validar de forma pesimista,
en vez de decir “sigo adelante si esto que quiero validar está bien” decimos “interrumpo si esto
que quiero validar está mal”. Es tan sencillo como eso.

5.8. Funciones y variables booleanas

Muchas veces tendremos funciones que devuelven valores booleanos o variables que los
almacenan. En todos los casos le pondremos a esas entidades nombres que representen una
pregunta. De este modo será absolutamente claro qué tendrá que devolver/almacenar esa
entidad en un caso o el otro.

Para que se entienda, tenemos una función bool validar_número_primo(int n);, ¿cuándo
devuelve true y cuándo devuelve false? En cambio pensemos en la función bool es_primo(
↪→ int n);. La nomenclatura de la función se responde o por sı́ o por no, hay una verdad o
falsedad.

Y más allá de eliminar ambigüedades en convenciones de devolución este estilo de nomen-
clatura permite ganar en legibilidad de código. Por ejemplo:

1 if(es_primo(n))
2 ...

Literalmente se lee “si es primo ejecutar el bloque”.
Ya que estamos, ¿implementamos la función? Un número es primo si sólamente es divisible

por 1 y por sı́ mismo.
¿Podemos validar que un número sea primo de forma directa? La realidad es que no ésta, al

igual que muchas otras validaciones, se realiza de forma indirecta: Lo que podemos verificar es
que un número no sea primo, si le encontramos divisores otros que 1 y sı́ mismo. Si para un
determinado número no le encontramos ningún divisor, entonces podemos decir que es primo.

Pero si hay infinitos divisores, ¿cómo podemos probar un número contra todos? Bueno,
esto es más fácil, podemos acotar el problema. Una cota inicial podrı́a ser darse cuenta de
que ningún número mayor a un número puede ser divisor. Esto nos elimina una infinidad de
divisores a probar.6

Implementemos la función:

1 bool es_primo(int n) {
2 for(int i = 2; i < n; i++)
3 if(n % i == 0)
4 // i divide a n
5 return false;
6 return true;
7 }

Notemos un par de cosas en esta implementación. La primera es el uso de early return. Si
encuentro un único divisor no sigo adelante con la iteración: Ya está, ya sé que n no puede

6¿Es esta la mejor cota?... rápidamente podrı́as darte cuenta de que dado que el mı́nimo resultado que da una
división es 2 si no encontramos un divisor menor o igual a n

2 no vamos a encontrarlo. Ahora bien, ¿es esta la mejor
cota? No, no lo es. Te queda de tarea pensar cuál es.
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ser primo, no gasto recursos. Pensémoslo con un ejemplo, ¿podés decidir en un vistazo si el
número 12312389122343436 es primo? No importa que tenga chiquicientos dı́gitos, si termina
en un número par es divisible por 2, ya está.

La siguiente cosa a destacar es la inexistencia de else. No es if(n % i == 0)return
↪→ false; else return true;. Para llegar a la conclusión de que el número no es primo no
me alcanza con que no sea par (el primer valor de mi iteración) necesito probar con todos
los valores de i. El return true; del final se ejecuta únicamente si el for termina sin haber
entrado nunca al if.

5.9. break y continue

Volviendo a los ciclos while, for y do-while hay dos instrucciones que los alteran y que tiene
sentido explicar ahora que ya conocemos el condicional if dado que se usan en combinación
con él.

Los tres ciclos que tiene C se interrumpen si la condición de corte evalúa a false. Simple.
Ahora bien, hay veces donde hay muchas cosas que deberı́an interrumpir un ciclo, y meter
todas las condiciones de corte como parte de la condición implica hacer código complicado,
requerir variables auxiliares que sirvan como centinelas para cortar, etc.

Por fuera de la condición de corte principal, cualquier ciclo se puede interrumpir con la
instrucción break:

1 while(n > 0) {
2 if(n % 42 == 0)
3 break;
4

5 printf(" %d\n", n);
6 n -= 3;
7 }

La condición de corte principal es n > 0, ahora bien, hay una segunda condición que puede
interrumpir el ciclo. Si n fuera divisible por 42 el ciclo se termina, sin siquiera llegar al printf().
Notar que no tiene sentido poner el break fuera de un if, si el break estuviera dentro del
bloque del while no habrı́a iteración dado que se interrumpe siempre a la primera ejecución.

Otras veces sucede que si se da determinada condición queremos saltearnos la ejecución del
bloque y “continuar” a la iteración siguiente. Por ejemplo:

1 for(int i = 1; i <= 10; i++) {
2 if(i % 3 == 0)
3 continue;
4 printf(" %d\n", i);
5 }

Imprimirı́a los números del 1 al 10, salteándose los múltiplos de 3. continue interrumpe el
bloque y salta al ciclo siguiente.

Ası́ como break nos evita tener que complejizar la condición de corte, continue nos evita
tener que meter el resto del bloque dentro de un gran else.

Notar que el código equivalente con while deberı́a ser:

1 int i = 1;
2 while(i <= 10) {
3 if(i % 3 == 0) {
4 i++;
5 continue;
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6 }
7 printf(" %d\n", i);
8 i++;
9 }

En el for como el incremento está fuera del bloque está garantizado que se ejecute inde-
pendientemente de si el bloque fue ejecutado en su totalidad o no. En cambio si en un while
tuviéramos un incremento el mismo no tiene ninguna jerarquı́a adicional con respecto al resto
del bloque, es una instrucción más. Este es uno de los tantos argumentos a favor de usar for
siempre que tengamos una iteración con un comportamiento de inicio, condición, incremento
definidos.

¿Qué pasarı́a si en el ejemplo anterior olvidáramos el i++ dentro del if? El bucle jamás
terminarı́a, porque el valor de i quedarı́a fijo en un valor múltiplo de 3. Siempre podemos
utilizar la tecla Control + C para matar la ejecución de un programa.

5.10. El condicional switch

Hay una construcción de control de flujo del lenguaje C que tiene una aplicación acotada
y es el condicional switch. Un bloque switch nos permite evaluar diferentes valores exactos
de una variable entera. Y las dos palabras que están en negrita en la oración anterior son las
que hacen que la aplicación sea acotada: Si no tenemos variables enteras y chequeos exactos no
sirve.

La sintaxis es ası́:

1 switch(nota) {
2 case 4:
3 printf("Aprobaste␣raspando\n");
4 break;
5 case 5:
6 printf("Peor␣es␣nada\n");
7 break;
8 case 6:
9 case 7:

10 printf("Bien!\n");
11 break;
12 case 8:
13 case 9:
14 printf("Muy␣bien!\n");
15 break;
16 case 10:
17 printf("Excelente\n");
18 break;
19 default:
20 printf("Qu é␣verg üenza!\n");
21 break;
22 }

nota es la variable entera a evaluar. Cada case evalúa un valor exacto particular. Una vez
que se entró por igualdad en un case se va a ejecutar todo lo que venga a continuación hasta
encontrar un break (si no hubiera break va a seguir de largo, no importa que se metiera en
otros case). De forma opcional puede haber un default que se ejecutarı́a sólo si no hubo
coincidencia con ninguna de las etiquetas de los cases.
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Cabe destacar que switch no es una iteración, acá la palabra reservada break se reutiliza
para algo que no tiene nada que ver con la función en ciclos ya vista.

Y remarquemos de nuevo: Los valores de comprobación tienen que ser exactos, no hay
forma en el switch de decir en un case “si está entre tanto o tanto” o enumerar valores. Cada
testeo exacto necesita de su case.

La instrucción switch existe porque es muy útil en algunos contextos de bajo nivel. Dado
que la evaluación de la variable se hace una única vez y se chequea por valores exactos, la
misma puede ser compilada de forma muy eficiente como una tabla de búsqueda (lookup table).
Para código de alto nivel suele ser mucho más común utilizar un patrón de if-else como se
mostró en un ejemplo anterior.

5.11. El operador condicional

Además de los operadores aritméticos, de asignación y booleanos que ya vimos el lenguaje
C tiene un operador condicional. Va por enésima vez pero repasemos: Un operador es un tipo
de expresión que toma un número de operandos y evalúa a un valor.

El operador condicional de C es el único operador ternario, es decir, que tiene 3 operandos.
La sintaxis es a ? b : c. Si a es verdadero evalúa a b, si no evalúa a c. Ejemplo: max = (x >
↪→ y)? x : y;, si x es mayor que y entonces evalúa al valor de x, si no al de y, en max se va
a asignar el máximo de los dos. Ejemplo: volumen = (control < 100)? control : 100;, si
control es menor a 100 usa el valor que tenga, si no lo limita a 100.

Es importante destacar que estamos ante un operador. No una instrucción de control de
flujo. Y si queremos recordar qué es un operador... me tomé el trabajo de definirlo hace dos
párrafos. El operador condicional no reemplaza al if, no es intercambiable con él, no nos sirve
para o hacer una cosa o hacer otra cosa. El operador, como operador, nos sirve para evaluar a
uno de dos valores diferentes en el medio de una expresión.

Por fuera de eso, la sintaxis de a ? b : c es confusa de leer cuando uno no está acostum-
brado, pero es un operador que permite economizar mucho código cuando se utiliza para evitar
escribir estructuras de control de flujo. Por poner un ejemplo:

1 printf("Faltan␣ %d␣minuto %s␣y␣ %d␣segundo %s\n",
2 minutos , minutos == 1 ? "" : "s", segundos ,

↪→ segundos == 1 ? "" : "s");

Si tuviéramos minutos = 5, segundos = 1 imprimirı́a "Faltan␣5␣minutos␣y␣1␣segundo
↪→ \n". ¿Es crı́ptico? seguro. Ahora bien, si lo hicieras con if necesitarı́as 8 lı́neas de código
para obtener el mismo resultado.

5.12. goto

La primera regla del club del goto es no utilizar goto.
Es una instrucción súper práctica para gente que sabe. Ustedes no saben. Está prohibido

utilizarlo en el curso.7

7Pero el dı́a que sepan úsenlo, es muy práctico, para algo está.

43



Capı́tulo 6

Arreglos

Con las herramientas vistas hasta el momento podemos declarar cuantas variables como
queramos, ahora bien el acceso a cada una de esas variables necesita la escritura de código
especı́fico para manipular a cada una de ellas. Imaginemos que tenemos un problema donde
tenemos que guardar múltiples valores de una misma especie, por ejemplo, para 50 alumnos en
un curso queremos almacenar su nota de parcial. ¿No se harı́a insostenible mantener variables
nota1, nota2, nota3 ... nota50 y escribir código para acceder a cada una de ellas?, ¿y qué
harı́amos si el cuatrimestre siguiente tuviéramos 60 alumnos en vez de 50?

El lenguaje de programación C permite declarar paquetes de variables del mismo tipo. Estos
paquetes se llaman arreglos o arrays o vectores. Un arreglo consiste en un bloque de memoria
consecutivo con espacio suficiente como para almacenar n variables de determinado tipo y cada
una de esas variables puede ser accedida de forma individual utilizando el nombre del paquete
y un número que representa su ı́ndice. La lı́nea:

1 int valores [4];

declara un arreglo de nombre valores que contiene 4 elementos cada uno de tipo int. Dado
que no definimos el arreglo, cada uno de estos enteros contendrá basura.

Podemos acceder a cada uno de estos enteros y definirles un valor:

1 valores [0] = 10;
2 valores [1] = 20;
3 valores [2] = 30;
4 valores [3] = 40;

Dentro de valores tenemos 4 variables de tipo int que están numeradas entre 0 y 3. Todo
arreglo de n elementos tiene sus elementos entre las posiciones 0 y n− 1. Cada uno de los
valores[i] se comportará como una variable de tipo int independiente de las demás y con
todas las reglas que ya conocemos.

El lenguaje C también permite definir nuestro arreglo en bloque el momento (y sólo en el
momento) de la declaración:

1 int valores [4] = {10, 20, 30, 40};

En este caso pedimos memoria para 4 elementos int inicializados con los valores entre las
llaves.

Siendo que estamos inicializando con 4 valores podemos omitir la longitud:

1 int valores [] = {10, 20, 30, 40};
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generará el mismo arreglo que en el ejemplo anterior. El compilador contará cuántos valores se
definen y declará al arreglo con ese tamaño.

En caso de dar un tamaño y definir con una cantidad diferente:

1 int valores [4] = {10, 20};

el compilador declarará un arreglo de 4 enteros y definirá TODOS los elementos del arreglo.
Los primeros dos, que están especificados, con 10 y 20 y los otros dos con 0. Si, por ejemplo,
quisiéramos inicializar en cero un arreglo de una cantidad arbitraria de elementos podemos
utilizar esto a nuestro favor y definirlo como {0}, esto forzará la definición del primer elemento...
pero eso disparará que se definan todos los restantes.

Es importante destacar que inicializar un arreglo es un proceso costoso que requiere que el
compilador itere sobre la memoria. No vamos a inicializar los valores de un arreglo a menos
que nuestro problema lo requiera.

Además se pueden inicializar posiciones especı́ficas de un arreglo, por ejemplo:

1 int valores [4] = {[3] = 40, [1] = 20, 30};

inicializa la posición 3 con 40, la posición 1 con 20 y la siguiente a 1, es decir la 2, con 30.
Vamos a focalizar sobre algo que ya se dijo: Cuando declaramos un arreglo generamos un

paquete que contiene en su interior n variables de un determinado tipo. C no provee ninguna
herramienta para, por ejemplo, imprimir un arreglo. ¿Cómo imprimimos entonces un vector?,
bueno, como cada uno de los elementos individuales que contiene, que pertenecen a tipos
básicos que sabemos operar.

6.1. La memoria de los arreglos

Como se dijo previamente, cuando uno declara un arreglo el compilador reserva un paquete
de memoria consecutiva de tamaño suficiente como para contener nuestros elementos. En el
ejemplo

1 int valores [5];

como sizeof(int)= 41 entonces el compilador reservará 20 bytes de memoria consecutivos, 5
veces los 4 bytes que necesita cada uno de sus enteros.

De esa memoria el compilador sólo recordará que la memoria comienza en una posición
determinada, por ejemplo la posición de memoria 0xA4. Para el compilador, internamente,
valores va a ser recordado por su posición. Esto no es algo particular de arreglos, ya se
mencionó que ası́ funciona siempre que se declara una variable. El nombre de la variable es
un identificador recordable para nosotros los programadores, el compilador conoce en qué
posición de memoria asignó esa variable.

¿Y cómo accederá el compilador a la memoria de cada uno de los elementos particulares de
mi arreglo? Pues haciendo cuentas. El compilador sabe que el primer elemento está, en nuestro
ejemplo, en la posición 0xA4. Si cada elemento mide 4 bytes el segundo elemento estará en la
posición 0xA8, el siguiente en la posición 0xAC2 y ası́ (figura 6.1).

Es decir, internamente para nuestro ejemplo cada elemento i-ésimo se encuentra en memoria
en la posición 0xA4 + i * 4.

1Vamos a recordar por única vez que, salvo para sizeof(char) todos los sizeof dependen de la plataforma y
del compilador pero en este curso vamos a utilizar de ejemplo al GCC en 64 bits. Es la última vez que haremos esta
aclaración.

2Las direcciones de memoria suelen expresarse en hexadecimal. Como el hexadecimal tiene 16 sı́mbolos, cuando se
nos acaban los sı́mbolos del 0 al 9 del decimal continuamos con letras, de la A a la F. La C representa el valor 12, y es
lógico que 8 + 4 = C.
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Figura 6.1: Esquema del arreglo valores y del acceso a valores[2].

Deberı́a tener todo el sentido ahora que en C el primer elemento sea el de la posición 0, es
simplemente porque es donde arranca la memoria del arreglo.

¿Por qué es importante entender cómo funciona la memoria en los arreglos? Porque la
siguiente pregunta que tenemos que hacernos es: ¿Qué hace C si quisiera acceder por encima
del ı́ndice n− 1 en un arreglo de n elementos?

La pregunta se responde con el primer capı́tulo de este apunte. Cuando en ingenierı́a
diseñamos un producto tenemos objetivos y lineamientos previos al diseño. La realidad es
que no hay productos buenos y malos en absoluto, será bueno un producto que cumpla con
sus objetivos y malo uno que no. Recordemos entonces para qué se creó C: Se necesitaba un
lenguaje que sirviera para escribir sistemas operativos, que las operaciones sean traducibles
directamente a assembly, que no haga nada que el programador no pidió explı́citamente hacer.

Ası́ como en C la memoria de las variables no se inicializa si no las definimos o ası́ como
en C los overflows simplemente ocurren, si queremos acceder por fuera de la memoria de un
arreglo nuestro programa intentará hacerlo. Es un comportamiento totalmente deseable... no
deseable para un programador, pero sı́ deseable según las premisas de diseño y según lo que
espera alguien que va a programar economizando recursos.

Si en nuestro ejemplo anterior accediéramos a valores[5] el compilador hará la cuenta
0xA4 + 5 * 4 = 0xB4 y accederá a esa posición de memoria. Que está fuera de la memoria de
nuestro vector. Es un error gravı́simo, es un error que puede hacer que el sistema operativo
mate a nuestro programa, o puede hacer que nuestro programa tenga un comportamiento
errático o incluso abrir un bache de seguridad importante, pero no es un error del lenguaje, es
un error del programador.

6.2. El tipo size t

No hay dos arquitecturas de procesador iguales, y esto aplica también a cuánta memoria
puede administrar determinado procesador o plataforma. Por ejemplo el procesador MOS6502,
que es el procesador que estaba en todos los videojuegos y consolas de los ’80s y principios
de los ’90s, era un procesador de 8 bits, sin embargo cuando se trataba de memoria RAM
podı́a manejar direcciones de memoria de 16 bits3. Mientras que las PCs generalmente pueden
indexar tanta memoria como la capacidad del procesador, por ejemplo una Intel 80286 de 16

3Y si no lo hubiera hecho no hubiera podido usar más de 256 bytes de memoria, con 16 bits eso se expande a 65536.
Recordemos que la memoria no sólo sirve para almacenar variables, también es donde se encuentra el código máquina
de nuestro programa.
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bits indexaba 16 bits, la Pentium III de 32 utilizaba 32 y un procesador actual de 64 indexa 64.
La pregunta que cabe hacerse es, si tuviera que almacenar una cantidad referida a tamaños

de memoria, ¿cuál serı́a la mejor variable para hacerlo?, ¿short, int, long? Ya que estamos
un comentario al margen, históricamente el tamaño de palabra del procesador era lo que se
utilizaba para las variables int, sin embargo ya vimos que en el GCC de 64 bits en vez de
tener int de 64 se tienen de 32... lo cual incluso subvierte hasta poder adivinar la capacidad de
memoria en función del tipo int.

La pregunta que hicimos en el párrafo anterior no tiene respuesta satisfactoria. La única
respuesta posible serı́a “usá el tipo más grande y eso te va a dejar seguro”, pero tal vez el tipo
más grande sea ineficiente tanto en memoria como en operatoria porque si el hardware no lo
soportara se requerirı́a operarlo por software que es groseramente más lento.

Para responder a esta pregunta tenemos el tipo size_t. El tipo size_t es un tipo provisto
por el compilador. Como el fabricante del compilador sabe en qué plataforma está y qué
decisiones de mapeo de tipos utilizó sabe cuál es el tipo adecuado para guardar una cantidad
de memoria que va a funcionar correctamente en esa plataforma. Por lo tanto se tomó el trabajo
de hacer un typedef para size_t con el tamaño adecuado.

En C size_t es el tipo de los ı́ndices de los vectores, también es el tipo de lo que devuelve
sizeof.

Es tan generalizado el uso de size_t y tan opaco qué tipo tiene detrás que incluso hay
definido un formato para imprimir variables de tipo size_t en printf():

1 printf(" %zd\n", sizeof(int)); // Imprimir ı́a 4

En este curso vamos a utilizar size_t siempre que manipulemos cantidades de memoria o
ı́ndices de arreglos.

6.3. El problema del sizeof de los arreglos

Supongamos el siguiente ejemplo:

1 # include <stdio.h>
2

3 void f(int valores []) {
4 printf(" %p\n", valores);
5 printf(" %zd\n", sizeof(valores));
6 }
7

8 int main(void) {
9 int valores [] = {1, 2, 3, 4, 5};

10

11 printf(" %p\n", valores);
12 printf(" %zd\n", sizeof(valores));
13

14 f(valores);
15

16 return 0;
17 }

y volvamos a asumir que valores vive en la posición 0xA4 de memoria. Al ejecutar el programa
los printf() del main() imprimirı́an 0xA4 y 20 respectivamente. No hay mucho más que decir,
por un lado " %p" es el modificador que utilizamos para imprimir posiciones de memoria y por
fuera de eso ambos valores son lo esperado.
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Ahora bien, dentro de la función f() se imprimirán 0xA4 y 8 respectivamente. ¿Qué? Eso.
No parece tener sentido, ¿no?, ¿la variable valores que pertenece a f() contiene la misma
posición de memoria que la variable valores que pertenece al main()? ¿Por qué 8 si el vector
tiene 5 enteros y deberı́a totalizar 20?

En este capı́tulo no responderemos ninguna de estas preguntas. Sólo presentamos el proble-
ma. No importa el tamaño del vector el sizeof dentro de una función será siempre 8 y hay
algo en cómo funciona C que hace que, para arreglos, la variable dentro de la función copie la
dirección de la variable fuera.

Notar que dentro de la función que declaró un arreglo podrı́amos utilizar sizeof para saber
la cantidad de elementos del mismo:

1 void f(void) {
2 double valores [] = {1, 2, 3, 4, 5};
3 size_t n = sizeof(valores) / sizeof(valores [0]); // Da 5
4 }

No importa el tamaño del tipo de los elementos, si dividimos el tamaño de la memoria total
por el tamaño de uno de los elementos obtendremos el número de elementos. Sólo dentro de la
función que lo declara, como vimos antes.

Esto que vimos referido a las funciones tiene consecuencias importantes en la práctica.
Supongamos que queremos implementar una función que reciba un arreglo de enteros y
devuelva el promedio de sus elementos. La firma no podrı́a ser float promediar(int a[]); a
menos que haya una forma externa de conocer la longitud del arreglo a, porque el problema
me lo defina de alguna forma. De forma genérica siempre deberá recibir el tamaño:

1 float promediar(int a[], size_t n) {
2 int suma = 0;
3 for(size_t i = 0; i < n; i++)
4 suma += a[i];
5

6 return (float)suma / n;
7 }

Notar que tanto para el tamaño como para el ı́ndice de iteración utilizamos size_t. Notar
además que está función es genérica con respecto al tamaño del arreglo, funciona para arreglos
de cualquier tamaño. Cuando nosotros escribimos una función de bajo nivel no conocemos cuál
es el contexto en el cual la misma va a ser utilizada. Siempre vamos a elegir diseñar funciones
genéricas que se adapten a cualquier tamaño de problema.

6.4. Arreglos multidimensionales

En C podemos declarar arreglos de más de una dimensión, es decir arreglos de arreglos. Es
lo que vamos a utilizar, en principio, para modelar matrices.

La expresión:

1 int m[4][3] = {
2 {11, 12, 13},
3 {21, 22, 23},
4 {31, 32, 33},
5 {41, 42, 43},
6 };

declara una matriz de 4 filas y 3 columnas que en Álgebra podrı́amos pensar como:
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Figura 6.2: Esquema de la matriz m y elemento m[2][1].

M =


11 12 13
21 22 23
31 32 33
41 42 43

 .

Podemos acceder a cualquier elemento de la matriz utilizando dos ı́ndices, por ejemplo
m[2][1] es el elemento de valor 32 dado que se trata de la tercera fila y segunda columna.

Internamente la memoria se agrupa de forma lineal, una fila a continuación de la otra:
{11, 12, 13, 21, 22, 23, 31, 32, 33, 41, 42, 43}4. ¿Cómo hace el compilador para dar-
nos la ilusión de que la memoria es bidimensional?

C en realidad ve a m como un arreglo de 4 elementos donde cada elemento es un arreglo
de 3 enteros. Por eso empezamos diciendo que los arreglos multidimensionales son arreglos
de arreglos. Cuando el compilador procesa la expresión m[2][1] primero ataca m[2]. Si m es
un arreglo de arreglos, entonces m[2] es el tercero de esos arreglos y es el que declaramos
como {31, 32, 33}. ¿Cómo llega a eso?, haciendo la misma cuenta que ya desarrollamos para
arreglos unidimensionales. Si cada elemento de m es un arreglo de 3 enteros entonces el sizeof
de cada elemento es 3× 4 = 12. Cuando decimos m[2] entonces va a saltearse 2 * 12 desde el
inicio y va a ir al byte 24, es decir, 6 enteros más adelante que el comienzo de la memoria. Es
decir, va a estar sobre la memoria que se corresponde con el valor 31. Luego aplica [1] sobre
ese arreglo {31, 32, 33} es decir, se saltea 4 bytes. Ahı́ obtiene que m[2][1] se corresponde
con el 32 (figura 6.2).

Notar que genéricamente para m[i][j] el compilador se mueve i * 3 + j unidades de
enteros desde el inicio de la memoria.

6.4.1. Pasaje de matrices a funciones

El pasaje de matrices a funciones es otra de las cosas que vino a solucionar el estándar C99
y que en los 30 años previos no funcionaba de un modo natural.

Supongamos que tenemos definido:

1 int m[2][3] = {
2 {0, 1, 2},
3 {3, 4, 5},
4 };

y queremos pasarle esa matriz a una función que incialice en 0 cada uno de sus elementos.
En las variantes de C previas a C99 deberı́amos haber implementado algo de este estilo:

1 void funcion1(int m[2][3]) {
2 for(size_t f = 0; f < 2; f++)
3 for(size_t c = 0; c < 3; c++)
4 m[f][c] = 0;

4Ordenar primero por filas es lo que se conoce como row-major order, no todos los lenguajes usan esta convención.
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5 }

e invocado funcion1(m);. Notar que es lo que dijimos que no querı́amos, nosotros queremos
tener funciones genéricas que operen con arreglos (y matrices) de cualquier tamaño. ¿Por qué
una función que opera sólo con matrices de 2× 3 si podrı́amos hacerlo con matrices de tamaño
arbitrario.

Bueno, previo a C99 lo más “genérico” que podı́amos obtener era esto:

1 void funcion2(int m[][3] , size_t fs) {
2 for(size_t f = 0; f < fs; f++)
3 for(size_t c = 0; c < 3; c++)
4 m[f][c] = 0;
5 }

e invocado funcion2(m, 2);. En el pasaje de matrices a funciones puede omitirse la primera
dimensión como parte del tipo. ¿Sabemos explicar por qué la primera dimensión no importa
pero sı́ las demás? Sı́, claro, es lo que vimos en el capı́tulo anterior. Dentro de las dos funciones
que definimos hasta ahora cuando se accede a m[f][c] el compilador tiene que hacer una
cuenta que involucra moverse f * 3 + c enteros con respecto al comienzo de la matriz5. Notar
que en esa cuenta importa la cantidad de columnas pero la cantidad de filas nos tiene sin
cuidado. C necesita tener definido ese número para poder computar el acceso a la memoria.

Seguimos sin tener funciones genéricas.
En el estándar C99 se introdujo una sintaxis nueva que es la siguiente:

1 void funcion3(size_t fs, size_t cs, int m[fs][cs]) {
2 for(size_t f = 0; f < fs; f++)
3 for(size_t c = 0; c < cs; c++)
4 m[f][c] = 0;
5 }

que invocarı́amos funcion3(2, 3, m);. Finalmente tenemos funciones para matrices genéricas,
podemos pasarle matrices de cualquier dimensión. Pero estamos obligados a que las dimensio-
nes estén en la firma de la función antes de la matriz. Notar que no es que no especificamos
el tamaño de m, estamos diciendo que m tiene cs columnas (podrı́amos omitir las filas) por lo
tanto el parámetro cs tiene que venir antes en la definición de funcion3().

Dado que en este curso utilizamos el estándar C99 preferiremos la variante de funcion3(),
incluı́mos las demás por contexto histórico.

6.5. Arreglos de largo variable (VLA)

En el estándar C99 se introdujeron los arreglos de largo variable (VLA por las siglas de
variable length array). En un VLA el tamaño del arreglo puede ser definido por una variable:

1 size_t n;
2 // Asigno un valor para n
3 int v[n];

En versiones previas del lenguaje los tamaños de los vectores tenı́an que ser números fijos
definidos en tiempo de compilación, dado que la asignación de la memoria se hacı́a de forma
estática.

En el ejemplo anterior, el vector v se crea con el tamaño que tenga el valor de n en el
momento de la declaración. Una vez que v está creado su tamaño ya no cambia.

5Que por lo que vimos en el capı́tulo de arreglos y sizeof está codificado en m.
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Figura 6.3: Esquema del arreglo que contiene la cadena "hola".

Si bien los VLA son una herramienta útil del lenguaje, su uso debe ser evitado. En próximos
capı́tulos desarrollaremos más sobre cómo funciona la memoria y veremos que el tamaño
máximo de los vectores que estuvimos manipulando hasta el momento es muy limitado. Querer
crear un vector con un largo grande va a hacer que nuestra aplicación se rompa, por lo que los
VLA no son la herramienta para generar vectores de tamaño adaptativo a los problemas. Sólo
nos van a servir si el tamaño del vector está acotado. Más adelante en el curso veremos técnicas
para resolver este tipo de problemas.

6.6. Cadenas de caracteres

Venimos utilizando cadenas de caracteres desde el hola mundo, son precı́samente el "Hola␣
↪→ mundo\n" que le pasamos como parámetro a printf(). Las cadenas de caracteres son un
caso particular de arreglos de char con un par de reglas adicionales propias.

En primer lugar repasemos que un carácter se almacena en memoria como un número. La
equivalencia entre números y caracteres que solemos utilizar es la dada por la tabla ASCII6.
Dicha tabla define 127 caracteres que podemos identificar con su respectivo número el cual
puede ser almacenado sin problemas en un byte.

Bien, volvamos ahora sobre el hola mundo:

1 printf("Hola␣mundo\n");

Si las cadenas de caracteres son arreglos de caracteres, entonces a printf() le estamos
pasando un arreglo... ¿Pero no era que si pasábamos un arreglo a una función tenı́amos que
además pasar su longitud? Sı́, siempre y cuando no haya información adicional para inferir esa
longitud.

Las tres instrucciones siguientes son totalmente equivalentes entre sı́:

1 char s[] = "hola";
2 char s[] = {104, 111, 108, 97, 0};
3 char s[] = {’h’, ’o’, ’l’, ’a’, ’\0’};

Es decir, las 3 lı́neas declaran un arreglo de 5 caracteres y lo definen con los ASCIIs
correspondientes a la h, la o, la l, la a... y el carácter 0 de la tabla ASCII, llamado NUL y
representado en C con el literal ’\0’ (figura 6.3).

Si bien cuando se desarrolló C el diseño de sus cadenas de caracteres fue novedoso no hay
magia negra en el hola mundo: printf() sabe la longitud de la cadena que recibe porque la
misma está delimitada. Su último carácter es un centinela que dice que no hay que seguir más
allá de él. En realidad no sabe la longitud, pero puede calcularla sencillamente iterando cada
uno de los caracteres.

Notar una sutileza, el párrafo anterior dice “sabe la longitud de la cadena que recibe” y no “sabe
la longitud del arreglo que recibe”. Arreglo y cadena son dos cosas diferentes:

6ASCII: American Standard Code for Information Interchange, es decir código “americano” estándar para el
intercambio de información.

51



6.7. ENCABEZADO STRING.H CAPÍTULO 6. ARREGLOS

1 char s[100] = "hola";

En este ejemplo tenemos un arreglo s de longitud 100, ahora bien, la cadena contenida en
dicho arreglo mide 4: h, o, l, a. La relación entre arreglo y cadena es que la longitud del arreglo
tiene que ser al menos uno más que la longitud de la cadena, para poder almacenar el ’\0’.
Pero arreglo y cadena son cosas diferentes. El arreglo es el contenedor en el cual vive la cadena.

Sólo por formalizar vamos a definir a la cadena como una sucesión de caracteres en memoria
finalizados con un ’\0’. Y vale destacar que esto es un caso particular de arreglos y más aún
un caso particular de arreglos de caracteres.

6.7. Encabezado string.h

TODO

6.8. Entrada y salida (I/O)

La comunicación de nuestro programa con el exterior se da en principio por cadenas de
caracteres7. Desde el primer ejemplo vimos que podemos imprimir una cadena con printf().
Ahora vamos a profundizar un poco en esa comunicación.

Un programa en C se comunica con el exterior mediante tres flujos (streams) diferentes:
stdin, stdout, stderr. El primero es un flujo de entrada, los otros dos son flujos de salida.

¿Y qué son los flujos?, los flujos son colas de comunicación en los cuales se acumulan
caracteres. Cuando nosotros imprimimos con printf() estamos escupiendo caracteres de a
uno por vez a stdout. stdout va a acumular esos caracteres en una memoria intermedia,
llamada buffer, y cuando sea conveniente esos datos se van a mostrar por la pantalla u otro
lugar equivalente. Se llaman flujos por eso, son un caudal de información que viaja en un
determinado sentido, no hay ningún tipo de orden superior a ese continuo de bytes.

Como se dijo, los flujos se separan entre flujos de entrada y de salida. En los de entrada
hay algún agente externo (por ejemplo un usuario tipeando en su teclado) que está dejando
cosas dentro de un buffer que van a almacenarse ahı́ hasta que nosotros nos decidamos a
leer caracteres de a uno por vez. Mientras que en los flujos de salida nosotros depositaremos
caracteres en un buffer, hasta que los mismos se liberen al exterior (por ejemplo al monitor del
usuario).

6.8.1. Salida

Si quisiéramos imprimir un byte en stdout podemos utilizar:

1 putchar(’h’);

imprime la letra ’h’ en stdout.
Tenemos dos funciones que trabajan con cadenas:

1 puts("hola");
2 printf(" %d\n", 42);

La primera imprime "hola\n" por stdout. Prestar atención al ’\n’ que agregó aunque
nosotros no lo incluı́mos. La segunda es una vieja conocida e imprime "42\n". Cuando decimos
“imprime” en todos los casos estamos queriendo decir: Escupe esos bytes en el buffer de stdout
y se desentiende por lo que pase después. No es mi programa el que pone las cosas en la
pantalla, si es que hay una.

7Y por el entero que devuelve el main(), pero no podemos expresar mucho por ahı́.
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6.8.2. Entrada

Si quisiéramos leer un único carácter, por ejemplo ingresado por el usuario, de stdin
podemos utilizar:

1 int c = getchar ();

en la variable c quedará el byte leı́do. Si no hubiera nada en el buffer de stdin mi programa se
quedará esperando a que hayan datos para leer. Cabe destacar que los datos generalmente se
vuelcan al buffer recién después de que el usuario presione el “enter”, el cual representa uno o
dos caracteres y es lo que nosotros vemos como ’\n’.

También podrı́amos leer una lı́nea completa, hasta el ’\n’ (inclusive):

1 char s[30];
2 fgets(s, 30, stdin);

La función fgets() intenta leer una lı́nea de stdin. Nosotros le indicamos el tamaño de
memoria que tenemos disponible, en este caso 30, por lo que la función sabe que tiene hasta 29
caracteres disponibles, dado que para generar una cadena hay que finalizar con ’\0’. Como
lee lı́neas si el ’\n’ se alcanzan antes de agotar los 29 caracteres la función leerá hasta el ’\n’
(y si hubieran más cosas en el buffer quedarán esperando a una siguiente lectura) y finalizará
la cadena. En cambio si se agotaran los 29 caracteres y no se hubiera leı́do el ’\n’ la función
finalizará la cadena y retornará, es decir, sin haber leı́do la lı́nea en su totalidad. Mirar si el
último carácter de la cadena es un ’\n’ nos permite saber si el tamaño de nuestro arreglo fue
suficiente o la lı́nea lo superó.

6.8.3. Leer cosas que no son cadenas

No se puede, stdin es un stream de caracteres.
Lo que sı́ se puede es leer una cadena y luego procesarla para extraer lo que necesitemos.
Por ejemplo, si necesitáramos leer un entero podrı́amos hacer:

1 char s[20];
2 fgets(s, 20, stdin);
3 int n = atoi(s);

La función atoi(), declarada en el encabezado <stdlib.h> recibe una cadena de caracteres
e intenta extraer el valor numérico contenido en la misma. Por ejemplo, si se invocara atoi("
↪→ 130"); la función devolverı́a el entero 130. La función convierte a valor numérico mientras
encuentre en la cadena caracteres válidos, cuando encuentre un caracter no numérico interrum-
pirá el proceso y devolverá lo que tenı́a hasta ese momento. Por ejemplo, atoi("130hola");
devolverá 130, dado que la ’h’ no forma parte de un número.

Análoga a la función atoi() está la función atof() que sirve para extraer un número float
de una cadena.

6.8.4. Agotando la entrada

Vimos que con getchar() podemos leer un byte y que con fgets() podemos leer una lı́nea.
Ahora bien, ¿cómo harı́amos si quisiéramos leer todos los bytes o todas las lı́neas hasta agotar
la entrada?

Tenemos los siguientes códigos:

1 int main(void) {
2 int c;
3 while ((c = getchar ()) != EOF)
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4 putchar(c);
5 return 0;
6 }

y

1 int main(void) {
2 char s[100];
3 while(fgets(s, 100, stdin) != NULL)
4 printf(" %s", s);
5 return 0;
6 }

Ambos códigos van a leer la totalidad de lo que haya para leer, en un caso de a un carácter
por vez y en el otro de a lı́neas (o fracciones de lı́neas, si alguna de ellas midiera más de 99
caracteres) y hacer un eco de lo leı́do por stdout.

La función getchar() devuelve EOF en caso de falla mientras que fgets() devuelve NULL,
ambas son etiquetas. ¿Qué se considera una falla? Que se termine la entrada, EOF literalmente
son las iniciales de end of file, final de archivo. Esta marca se dispara cuando ya no hay nada
para leer.

¿Cómo hace el usuario para decirle a mi programa que no va a ingresar más datos? La señal
de final de archivo se dispara con la combinación de teclas: Control + D, apretando ambas
teclas a la vez.

Al principio dijimos que los caracteres se codificaban en un byte... ¿por qué entonces
getchar() devuelve un int y no un char? Bueno, el valor de EOF no es un char. La función
devuelve o caracteres o EOF. Entonces no le alcanza un char para su devolución. El valor leı́do
de getchar() nosotros tenemos que almacenarlo en un int, pero una vez que validamos que
ese int no sea EOF entonces sabemos que entra en un char:

1 char s[100];
2 size_t i;
3 int c;
4

5 while(i < 99 && (c = getchar ()) != EOF && c != ’\n’)
6 s[i++] = c;
7 s[i] = ’\0’;

Serı́a un algoritmo similar al que implementa internamente fgets().

6.8.5. Redirección de flujos

Si bien se dijo que generalmente stdin es un flujo que representa lo que ingresa por teclado
y stdout lo que sale por la pantalla, este comportamiento puede cambiarse fácilmente a nivel
sistema operativo:

$ ./programa > archivo.txt

Ejecuta a programa y redirige su salida de stdout al archivo archivo.txt (si no existe lo
crea, si existe lo reemplaza).

Análogamente:

$ ./programa < archivo.txt

Ejecuta a programa pasándole el contenido completo del archivo por stdin. Al terminar el
archivo se dispara, obviamente, la marca de fin de archivo.

También se pueden encadenar programas:
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$ ./programa1 | ./programa2

Ejecuta ambos programas y vuelca el stdout del programa1 como stdin del programa2.
Esta técnica de redirigir “streams” se conoce como “piping”, literalmente entubado. De ahı́ el
carácter | toma el nombre de “pipe”.

6.8.6. Salida de error

Como se dijo nuestro programa tiene dos flujos de salida stdout y stderr. El primero
corresponde a la salida normal de nuestro programa, lo que se supone que es parte del
procesamiento que realiza. El segundo se utiliza para informar de errores anormales en el
programa.

Para imprimir por stderr usamos la función:

1 fprintf(stderr , "Error:␣ %d\n", 10);

que es similar a printf() pero se antepone un parámetro adicional que es el flujo de salida en
el que queremos escribir8.

Dos cosas importantı́simas sobre stderr:
1. stderr no tiene buffer, por lo que todo lo que imprimamos se va a ver de forma inmediata.

Cuando imprimimos por stdout dado que hay un buffer, si nuestro programa se rompiera en
la lı́nea siguiente tal vez lo último que imprimimos no llega a verse.

2. La salida de stderr no es capturada cuando hacemos redirección, es decir no importa
que hagamos piping siempre se van a ver los errores por pantalla.

Es por esto que utilizaremos stderr siempre que queramos mostrarle errores al usuario y
también siempre que estemos “poniendo printf()s” para diagnosticar un programa que falla.

8En realidad es mucho más que similar... cuando invocamos a printf(...); esta función no hace otra cosa que
invocar a fprintf(stdout, ...);.
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Alcance de variables

Hasta ahora hablamos de variables pero no profundizamos en dónde se ubican esas variables
en la memoria ni qué visibilidad tienen.

7.1. Globales y locales

En el lenguaje C hay dos tipos de variables: globales y locales.
Las variables globales son aquellas declaradas fuera de las funciones, mientras que las

locales son las declaradas dentro de las funciones.
Como su nombre lo indica la visibilidad de las variables globales es desde todos lados,

mientras que la visibilidad de las variables locales es sólo dentro de la función que las define.
En el siguiente ejemplo:

1 # include <stdio.h>
2

3 char a = ’A’;
4 char b = ’B’;
5

6 void f(char b) {
7 a = ’a’;
8 b = ’x’;
9 }

10

11 int main(void) {
12 char b = ’b’;
13 printf(" %c␣ %c\n", a, b);
14 f(b);
15 printf(" %c␣ %c␣ %c\n", a, b);
16

17 return 0;
18 }

La salida producida es "A␣b\n", "a␣b". ¿Por qué?
Separemos las variables según su pertenencia:

Globales: a y b

Locales a main(): b

Locales a f(): b
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Esas 4 variables ocupan lugares diferentes de memoria y son independientes entre sı́.
Cuando dentro de un código se utiliza un identificador tienen precedencia las variables

locales por sobre las globales. En este ejemplo, en ambas funciones la variable global b es
invisible dado que hay variables locales con el mismo nombre. Toda modificación que se haga
sobre b será local a esa función.

En el primer printf() se imprime la variable a global y la variable b local a main().
Luego se llama a la función f() la cual redefine la variable global a y la variable local b.
En el segundo printf() se imprimen las mismas variables que antes, pero como f()

modificó la variable global a se imprime el nuevo valor.

7.2. La pila de ejecución

Antes que nada recordemos que las variables viven en la memoria y que a la memoria se
accede a través de posiciones de memoria. Nosotros en nuestra aplicación identificamos a las
variables por un identificador y es el compilador el que traduce ese nombre en una dirección
de memoria.

Las variables globales viven en una zona especı́fica de la memoria de mi programa. Existen
durante toda la ejecución y están siempre en la misma posición. Es decir, en nuestro ejemplo
anterior, el compilador sabe la ubicación de las variables globales a y b y si tuviera que referir a
ellas en algún lugar reemplazarı́a su nombre por su posición.

En cambio las variables locales solamente existen mientras la función a la que pertenecen
está en ejecución. Por ejemplo, las variables locales de f() existen sólo cuando alguien llama
a esa función, al igual que las de printf(). Luego de ejecutarse las funciones esta memoria
queda disponible para reutilizarse.

La memoria de las variables locales vive en una zona que se denomina stack o pila. En
matemáticas una pila es una estructura donde cada vez que agrego un elemento lo hago encima
de los ya existentes, como si se tratara de una pila de platos en una alacena. En nuestro caso lo
que se apila es el marco de memoria de cada una de las funciones. Se llama stack frame, marco,
al espacio que ocupan las variables locales de determinada función.

Si tuviéramos el siguiente código:

1 void f() {
2 int a = -3;
3 }
4

5 void g() {
6 int a = -2;
7 f();
8 }
9

10 int main() {
11 int a = -1;
12 f();
13 g();
14 return 0;
15 }

Cuando el programa se inicia se ejecuta la función main(). La pila estaba vacı́a, pero se apila
sobre ella el marco de la función main(). En dicho marco de memoria hay un par de valores
que ahora no importan y está la memoria de la variable a.

Ahora bien, a diferencia de lo que dijimos con las globales, en el caso de las variables locales
el compilador no conoce su posición. La manera en la que identifica a las variables locales es
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Figura 7.1: Aproximación inicial al esquema de la pila. Izq. La pila al comienzo de la ejecución.
Der. La pila al llamar a f().

por su posición relativa dentro del marco. Es decir, el compilador conoce dónde empieza el
marco de main() y sabe en qué posición dentro de ese marco están las variables locales de esa
función.

Supongamos que la variable a se encuentra a 16 bytes del inicio del marco de ejecución y
supongamos que la pila empieza en la posición 1000 (y si bien la memoria solemos expresarla
en hexadecimal vamos a utilizar decimal para facilitar la lectura). Como la variable a es entera
ocupará 4 bytes, por lo que el marco de main() mide 20 bytes (figura 7.1.izq).

Si el marco arrancó en la posición 1000 y la variable a está a 16 de distancia, la variable a
está efectivamente en la posición 1016.

Cuando se llama a la función f() se apila sobre el marco de main() el marco de f()
(figura 7.1.der).

Dado que f() contiene las mismas variables que main() (y que g()) su marco de ejecución
tendrá la misma disposición.

Ahora bien, el marco de f() está encima del marco de main(), por lo que empieza en la
posición 1020. Por lo tanto la variable a de f() estará en la posición 1036.

Cuando termina la ejecución de la función f(), ¿cómo hace el programa para retomar no
sólo la memoria de main() si no también el bloque de código máquina que estaba ejecutando
antes de ir a f()? Acá hay algo importante, la función f() puede haber sido llamada desde
cualquier lugar, en nuestro caso, estamos siguiendo el código y sabemos que fue llamada desde
el main() pero podrı́a haber sido llamada desde g() (como de hecho pasa más adelante en el
código). ¿Cómo resuelve eso mi programa?

Llegó el momento de explicar para qué reservamos 16 bytes en el marco de las funciones.
En nuestra plataforma las direcciones de memoria ocupan 8 bytes. Reservamos memoria para
guardar dos direcciones de memoria (con significados totalmente diferentes) en el stack.

Volvamos un poco atrás en el tiempo, a antes de que main() llamara a la función f(). Se
está ejecutando la función main(), el compilador tiene en la memoria del procesador un registro
que le dice dónde empieza el marco de main(). Este registro se llama stack pointer, puntero de
la pila, SP. Además tiene otro registro que se llama program counter, contador de programa, PC
que le dice en qué posición de la memoria está la instrucción de código máquina que se está
ejecutando en ese mismo instante. Al momento de llamar a f() el compilador guarda en el
marco de memoria de f() el valor del SP (que dijimos que valı́a 1000) y del PC (que podrı́amos
decir que vale 12, el número de la lı́nea que se estaba ejecutando1), antes de actualizarlos: Al
SP le suma 20 y el PC se reemplaza por donde sea que está el código máquina de f() en la

1En la vida real va a ser la posición de memoria en la cual está la instrucción de assembly que se está ejecutando,
pero queremos que el ejemplo sea seguible.
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Figura 7.2: Esquema más detallado de la pila y los registros. Izq. La pila justo antes de llamar a
f(). Der. La pila al llamar a f().

memoria (y, siguiendo nuestra simplificación, diremos que es 1, porque se ejecuta la lı́nea 1 del
código fuente). En la figura 7.2.izq se ve cómo era el marco de ejecución en main() al ejecutar la
lı́nea 12 justo antes de llmar a f() mientras que en la figura 7.2.der se ve el instante posterior ya
dentro de f(), habiendo salvado en la pila de f() los valores de reposición de SP y PC previos
a la llamada.

Entonces f() se ejecuta sabiendo que el marco empieza en lo que indica el SP que es 1020.
Cuando f() termina su ejecución tiene que retornar el control a la función invocante. Sabe

que al comienzo de su marco están los valores viejos del SP y del PC y los utiliza para restaurar
ambos contadores. Eso devuelve el marco al marco de main() y la ejecución adonde se habı́a
quedado. La memoria de f() sigue estando en el stack, pero ya no le pertenece a f(), decimos
que se destruyó.

Luego main() continúa su ejecución y llama a g(). Ya sabemos qué hace, apila el SP y el PC
en el marco de g() e incrementa el SP en 20 y cambia el PC adonde esté el código de g().

La función g() ahora tiene su variable local a en la misma posición en la que antes estuvo
la variable local a de la función f(), dado que el SP está en 20 y la distancia era de 16, en la
posición 36 se encuentra a.

La función g() llama a la función f(). Guarda en el marco de f() su SP, que vale 1020, y su
PC, que vale 7. Incrementa SP en 20, que era el tamaño de su propio marco, y reemplaza el PC
por donde esté el código de f(), es decir 1. El esquema de la memoria al llamar a f() desde
g() se puede ver en la figura 7.3.

Ahora se ejecuta f(), pero notar que la variable a de f() está en una nueva posición de
memoria. Sigue estando a 16 bytes del inicio del stack frame de f() pero ahora el SP vale 1040,
por lo que a está en la posición 1056. La posición de a va a depender del historial de llamadas
que haya apilados en el stack y del tamaño del marco de cada una de ellas. El compilador
la encuentra relativa a lo que le diga el SP, pero el SP es una variable más del problema. En
nuestras tres funciones la variable a está siempre en SP + 16, y sin embargo es una posición
diferente para cada función e incluso para cada llamada a ellas.

Este mecanismo permite que las funciones se llamen libremente, en cualquier orden, que
sólo se ocupe memoria para las funciones que están en ejecución en un determinado momento,
e incluso permite que la misma función pueda ser llamada más de una vez dado que cada
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Figura 7.3: Estado de la pila al llamar a f() desde g().

invocación tendrá su propio marco de memoria independiente del marco de las otras llamadas.
Por el contrario, las variables globales están en una posición fija conocida por todos de forma
absoluta.

Como siempre, esto que se contó en estos párrafos es una simplificación del problema para
explicar el mecanismo y el concepto. La implementación real de esto tiene muchos más detalles
y complejidades2.

7.3. Paradigma procedural

El paradigma de programación procedural (o procedimental) propone que estructuremos
nuestro código en funciones.

Las funciones son cajas negras que resuelven subproblemas de mi problema original y la
comunicación de las funciones con sus funciones invocantes es a través de los parámetros de la
función y el retorno de la misma. Es decir, si quiero invocar a una función f() le tendré que
pasar parámetros con la entrada que necesita dicha función y la función me devolverá con un
return el resultado de su ejecución.

Los parámetros de entrada y valores de retorno de la llamada a la función tienen que ser
explı́citos.

Esto quiere decir que el ejemplo que vimos cuando hablamos de variables globales donde
imprimı́amos unas variables, llamábamos a una función void, reimprimı́amos las mismas
variables y el resultado era diferente es inaceptable.

2Que hayamos simplificado no significa que esta explicación haya sido fácil, no te sientas idiota si te llevó más de
una iteración entenderla.
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En este curso (y en general en cualquier ambiente de programación) ESTÁ TOTALMENTE
PROHIBIDO el uso de variables globales, a menos que las mismas sean de tipo const.

Se acepta definir de forma global información que diferentes funciones puedan leer, pero no
se acepta que las funciones modifiquen el estado global de la aplicación.
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Capı́tulo 8

Punteros

8.1. Introducción

Hasta el momento vimos que en el lenguaje C hay una jerarquı́a donde el main() dispara
llamadas a funciones que a su vez llaman a funciones, y también vimos que las funciones
reciben como parámetros expresiones del lenguaje, donde las mismas se evalúan y ese resultado
se utiliza para inicializar a las variables que son parámetro de las funciones. La memoria
no sobrevive a las funciones y las funciones pueden devolver un único valor, por lo que
practicamente hay un flujo de información unidireccional desde el alto nivel hacia el bajo nivel.

Hay veces que esto no alcanza, hay veces que esto no es eficiente, hay veces en la que la
memoria tiene que poder persistir a una función... y hay veces donde pasan otras cosas y hace
falta un mecanismo diferente de acceso a la memoria que los que ya vimos.

Un puntero es una variable que puede almacenar una posición de memoria.
Si se entendió el párrafo anterior entonces podemos terminar el apunte acá.
¿Por qué es que el apunte sigue entonces?, porque partiendo de esa idea sencilla de

almacenar una posición de memoria se abren un montón de posibilidades y complejidades que
vamos a explorar el resto del curso.

1 int x = 5;
2 int *p;
3 p = &x;
4 printf(" %d\n", *p);

El código anterior imprime "5\n". La variable p es de tipo int *, puntero a entero, un
tipo de variable que puede almacenar la dirección de memoria de una variable de tipo entero.
Obviamente no guardamos posiciones de memoria porque somos acumuladores compulsivos
sino que la idea de guardar una dirección es para poder manipular esa dirección después.

La instrucción &i devuelve la posición de memoria de la variable x. Dado que i es entera y
la variable p almacena posiciones de variables enteras la asignación es correcta.

Ahora tenemos a p que almacenó la dirección de memoria de x. La instrucción *p le pide al
compilador que vaya a buscar qué hay en la posición de memora que almacena p. Es decir, esa
expresión evalúa al entero que está guardado en la posición referenciada por p. Dado que p
referencia a i ese entero será el entero almacenado en x, un 5. En la figura 8.1 se ve un esquema
de la memoria suponiendo que la variable x vive en la dirección de memoria 0xA8.

Fuera de broma este ejemplo introdujo el 100 % del comportamiento de los punteros. No
hay nada más allá de esto.

¿Por qué seguimos entonces?, porque estos dos operadores y este tipo de variables son los
bloques para construir un montón de cosas.
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Figura 8.1: Representación de memoria de int x; int *p = &x;.

Figura 8.2: Esquematización con “flechas que apuntan” del ejemplo de la figura 8.1.

8.2. Nomenclatura

<T> *p;: p es un puntero a <T>, siendo <T> cualquier tipo. Esto quiere decir que p puede
guardar direcciones de memoria de variables de tipo <T>.

&x: La dirección de x, operador de dirección, referencia la variable. Este operador sólo puede
utilizarse sobre variables, porque son las únicas que tienen una dirección de memoria.
Si x ∈ <T> =⇒ &x ∈ <T> *. Por ejemplo, si x fuera de tipo float, entonces &x por ser la
dirección de un float será de tipo float *.

p = &x: p apunta a x, obviamente el tipo de p tiene que ser tal que el tipo de &x sea el mismo.

*p: El valor apuntado por p, operador de indirección, desreferencia la variable. Si p ∈ <T>* =⇒
*p ∈ <T>. Por ejemplo, si p fuera un puntero a float entonces *p será un float.

Esta misma nomenclatura se utiliza en la representación pictórica de los punteros. Interna-
mente la acción de apuntar es guardar una posición de memoria como se mostró en la figura 8.1,
ahora bien, por simplicidad, para no tener que inventar direcciones de memoria ficticias po-
demos representar la acción de apuntar como en la figura 8.2. Ambas figuras representan lo
mismo, pero es más sencillo representar el almacenamiento de una dirección de memoria como
una flecha a lo referenciado. De esta representación viene el concepto de “apuntar”.

8.3. Devolver valores mediante punteros

Antes de complejizar más el tema, presentemos un uso práctico de punteros relacionado.
Como sabemos una función puede hacer return de un único valor.

¿Se puede en C devolver más de una cosa en una función? Utilizado return no. Ahora
bien, podemos hacer que una función devuelva múltiples cosas y de forma explı́cita como nos
impone el paradigma procedural.

Antes de ir a punteros presentemos un ejemplo sencillo de una función que devuelve un
valor con return que llamaremos “devolución por el nombre”:
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Figura 8.3: Esquema de la memoria del ejemplo al invocar a la función f().

1 int f() {
2 return 5;
3 }
4

5 int main() {
6 int n;
7 n = f();
8 printf(" %d\n", n);
9 return 0;

10 }

A estas alturas no necesita mayores exposiciones.
Imaginemos que ahora necesitamos que esta función devuelva más de una cosa y que la

otra cosa es suficientemente importante como para merecerse el return. ¿Cómo podemos hacer
para devolver nuestro 5 sin return?

El siguiente ejemplo es la reversión de este código sin return, utilizando punteros, que
llamaremos “devolución por la interfaz”:

1 void f(int *n) {
2 *n = 5;
3 }
4

5 int main() {
6 int n;
7 f(&n);
8 printf(" %d\n", n);
9 return 0;

10 }

Puede observarse el esquema de la memoria en la figura 8.3.
Antes de decir otra cosa lo importante es ambos ejemplos implementan la misma función.

f() en ambos casos es una función que tiene que devolver un valor entero. En un caso devuelve
su valor entero por el nombre, en el otro devuelve su valor entero por la interfaz. No son dos
funciones diferentes que hacen cosas distintas.

Dicho esto, entonces deberı́a ser inmediato que el main() tiene que ser idéntico en ambos
casos tanto en cómo va a declarar la variable receptora del resultado de invocar a f() como su
manipulación posterior. Lo único que va a ser diferente es cómo realizar la llamada.

En el primer caso n = f();, en el segundo f(&n). En un caso se guarda en n lo que devuelve
f(), en el otro se le pasa a f() la posición de memoria en la que queremos que f() guarde
el resultado, que no es otra cosa que la dirección de memoria de n. En la devolución por la
interfaz delegamos la asignación a la función.
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El parámetro n de la versión con punteros es un parámetro de salida, es decir, la función
no va a leer de ese parámetro ningún dato relevante para su operatoria, es simplemente la
referencia de dónde guardar el resultado de su cómputo.

Es importante notar que si una función quiere devolver un int entonces la firma de la
función necesita recibir un int * porque lo que necesita es que le pasen la posición de memoria
de un entero en el que va a guardar. ¿Por qué?, porque si no no podrı́a resoverse el problema.
Mirar el siguiente ejemplo:

1 void f(int n) {
2 n = 5;
3 }
4

5 int main() {
6 int n;
7 f(n);
8 printf(" %d\n", n);
9 return 0;

10 }

¿Estamos de acuerdo en que va a imprimir basura? Si no entendés por qué, volvé a leer el
capı́tulo anterior sobre alcance de variables.

Retomando, para la devolución por la interfaz necesito un nivel adicional de punteros.

8.4. Punteros al inicio de un arreglo

Supongamos que tenemos un arreglo

1 int valores [] = {10, 20, 30, 40};

cada uno de sus elementos es un int por lo que podrı́amos querer apuntar un puntero a alguno
de sus elementos.

Apuntemos un puntero a su primer elemento:

1 int *p = valores;

¿No falta un & por ahı́? No.
El nombre de un arreglo es un puntero a su primer elemento. En código: valores == &

↪→ valores[0]
¿Esto de que el nombre de un arreglo es un puntero a su primer elemento vale para cuando

lo asignamos a un puntero? No, vale siempre. En cualquier expresión donde aparezca el nombre
de un arreglo siempre eso va a evaluar como un puntero al primer elemento.

Recordemos el capı́tulo “El problema del sizeof de los arreglos” (y si no te acordás, releelo
ahora, es relevante) ahı́ habı́amos presentado el siguiente código:

1 # include <stdio.h>
2

3 void f(int valores []) {
4 printf(" %p\n", valores);
5 printf(" %zd\n", sizeof(valores));
6 }
7

8 int main(void) {
9 int valores [] = {1, 2, 3, 4, 5};

10
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Figura 8.4: Esquema de la pila de memoria en la llamada a f().

11 printf(" %p\n", valores);
12 printf(" %zd\n", sizeof(valores));
13

14 f(valores);
15

16 return 0;
17 }

y habı́amos hablado de la extrañeza de que adentro de la función el sizeof valı́a un inexplicable
8.

Miremos en detalle la llamada a la función f(valores)... estamos invocando la función con
el nombre del arreglo, es decir, estamos pasando un puntero al primer elemento (figura 8.4). La
realidad es que la variable valores de la función f() no es de “tipo arreglo” no es otra cosa
que un int *, en prototipos de funciones int v[] es lo mismo que int *v.

Notar también el detalle de printf(" %p\n", valores);, el modificador " %p" que servı́a
para imprimir posiciones de memoria (la p es de puntero) está recibiendo como parámetro
valores, es decir, la posición de memoria del primer elemento.

Es mas, en C no hay manera ni de evaluar ni de asignar un arreglo a ninguna cosa, cada vez
que hacemos una operación con arreglos estamos operando con un puntero al primer elemento.

8.5. Aritmética de punteros

Supongamos el siguiente ejemplo:

1 int valores [] = {10, 20, 30, 40};
2 int *p = valores;

al igual que antes, p apunta al primer elemento de valores. Por lo tanto *p == 10.
Ahora bien, la expresión p + 1 está sumando el contenido de p, que es una dirección de

memoria, con un número. Si p valiera por ejemplo 42, ¿cuánto valdrá p + 1? Bueno, valdrá
46. ¿Qué?, sı́, 46, las operaciones de punteros se hacen en función del sizeof del tipo base
apuntado. Como p es un int * se adiciona en unidades de sizeof(int), por lo tanto de entero
en entero, o de 4 en 4 bytes.

Entonces si p apunta al primer elemento de valores, p + 1 apunta al segundo elemento de
valores. *(p + 1)== 20.
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Figura 8.5: Esquema del puntero int *p = valores + 3;.

¿Se acuerdan del operador [] en C? No existe. Bueno, sı́, existe, pero es lo que se denomina
“azúcar sintáctica”. En programación se le dice azúcar sintáctica a expresiones que existen
sólo para hacernos más fácil escribir algo más complejo, pero en realidad el compilador
reemplaza por lo que realmente quiere decir. Ya vimos un ejemplo de azúcar sintáctica en el
capı́tulo anterior: Cuando declaramos una función void f(int v[]); para el compilador es
transparente que estamos queriendo decir void f(int *v);, esa azúcar nos permite manipular
vectores de forma totalmente inocente sin necesidad de conocer los detalles de punteros que
hay detrás. Lo mismo vale para el operador [].

La expresión p[i] es azúcar sintáctica para *(p + i). Si el compilador ve la primera la
reemplaza por la segunda. Es decir, el acceso a ı́ndices de vectores no es otra cosa que hacer
operaciones de aritmética de punteros1.

Como p[i] es lo mismo que *(p + i) y como la primera es mucho más fácil de entender
(prueba: la entendiste sin saber nada de punteros) vamos a preferir la primera.

Entonces, volviendo a nuestro ejemplo, dado que p apunta a valores, p[1] es lo mismo que
decir valores[1], y en ambos casos el compilador está haciendo operaciones de punteros.

Entonces, aritmética de punteros: p + i, donde p es una expresión de tipo puntero e i es
una expresión size_t incrementa p en i unidades de su tipo base.

También es una operación válida la resta de punteros p - q siempre y cuando p y q apunten
al mismo bloque de memoria. El resultado es un size_t con la cantidad de unidades del tipo
base que haya entre ambos. Ejemplo:

1 int valores [] = {10, 20, 30, 40};
2 int *p = valores + 3; // p apunta a valores [3]
3

4 size_t n = p - valores; // n vale 3

(Ver figura 8.5.)

8.6. La memoria “data”

(Prometemos que es la última vez que decimos esto: Acá es donde vamos a terminar de
explicar lo último que faltaba explicar del hola mundo.)

Comparemos estas dos declaraciones:

1 char a[] = "hola";
2 char *p = "hola";

En la primera estamos poniendo en nuestro stack un arreglo char [5] inicializado en
{’h’, ’o’, ’l’, ’a’, ’\0’}. En la segunda lo que tenemos en el stack es un char * que
almacena una dirección de memoria ¿Adónde?

1Como en realidad ya habı́amos presentado en “El problema del sizeof de los arreglos” que se supone que acabás
de releer.
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Cuando se inicia nuestro programa el mismo carga en memoria un bloque que se llama
“data”, que es de solo lectura, y que contiene información estática que va a ser utilizada en
nuestro programa. Los literales que escribimos entre comillas viven en ese área de la memoria.

¿Entonces, si a ocupa 5 bytes y p ocupa 8 bytes es más eficiente usar a que usar p? No, todo
lo contrario. Es cierto que a ocupa 5 bytes en el stack, pero si el marco de las funciones se crea
cuando las invoco, ¿cómo se inicializa la variable a cada vez que ejecuto mi función? Fácil, la
cadena "hola" se encuentra en el data. Cada vez que se invoca la función el mi programa tiene
que copiar esa memoria desde ahı́ al stack para inicializar mi variable.

En el caso de p también hay una inicialización: Asignar el puntero que corresponda del data
en p.

¿Entonces está mal la declaración de a? No, simplemente son cosas diferentes. Ya dijimos
que data era una zona de memoria de sólo lectura2, si nosotros necesitarı́amos modificar el
contenido de la cadena, necesitamos tenerla en el stack.

Es redundante decirlo, pero en:

1 int valores [] = {10, 20, 30, 40};

también los 16 bytes de inicialización de valores viven en data y mi programa tiene que copiar
eso al stack al iniciar mi función. Si esos valores fueran constantes, evaluá si no te conviene
declarar el vector como una variable global const para garantizar que no se ponga en memoria
más de una vez.

8.7. Punteros a void

Si las variables de tipo puntero almacenan direcciones de memoria, ¿en qué se diferencian
las direcciones de memoria de un int de las de un float? En nada.

Si simplemente necesitamos almacenar una dirección de memoria podemos hacerlo sin
especificar el tipo:

1 int i;
2 void *p = &i;

p será un “puntero a void” que está apuntando a i.
Ahora bien, en un void * tengo limitadas dos operaciones básicas de punteros: No puedo

hacer *p porque el compilador no puede resolver de qué tipo es esa memoria, y por lo tanto no
puede traducir eso en operaciones del procesador. Y tampoco puedo hacer p + i, porque no
sabe cuál es el sizeof de lo asignado.

Como ya se dijo: Sirven únicamente para almacenar una dirección. No sirven para manipular
la memoria en esa posición.

8.7.1. memcpy(), memmove() y memcmp()

Como ejemplo de la utilidad de void * están estas tres funciones de <string.h>.
Imaginemos el siguiente problema: Queremos copiar los elementos de un vector de enteros

en otro vector. Sabemos hacer eso. Ahora bien, queremos copiar los elementos de un vector
de flotantes en otro vector. Sabemos hacerlo también. Y también sabemos implementar una
función que copie en otro vectores de un tipo cualquiera.

Ahora bien, en C cada función es una función diferente. Pongamos de ejemplo:

1 void copiar_vint(int destino[], const int origen[], size_t n) {
2 for(size_t i = 0; i < n; i++)

2Si no lo fuera, ¿quién me garantizarı́a que después de ejecutar mi programa un rato en ese lugar siguiera diciendo
hola?
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3 destino[i] = origen[i];
4 }

Esta función no es una función genérica, recibe dos punteros a entero y al realizar la copia
hace destino[i] = origen[i], una operación de indirección, que implemente la copia de una
variable entera en otra variable entera según las reglas de los enteros. ¿Cuál serı́a el resultado
final de la operación? En el final el vector destino será una copia idéntica del vector origen,
byte a byte.

Y si al final de cuentas los vectores se habrán copiado y serán idénticos en memoria, ¿era
relevante saber que la memoria contenı́a enteros o tengo algún mecanismo para copiar los bytes
que la componen y ya?

Esta es una aplicación para void *, en vez de plantear una función que copie enteros,
flotantes u otro tipo puedo pensar a la memoria como bytes. Pensemos ahora el siguiente
ejemplo:

1 void copiar(void *destino , const void *origen , size_t n) {
2 char *d = destino;
3 char *o = origen;
4 for(size_t i = 0; i < n; i++)
5 d[i] = o[i];
6 }

Esta función copia bytes, es cierto, lo hace con instrucciones de char, pero dado que la
asignación dentro del mismo tipo no realiza ninguna conversión, preserva el contenido de
los bytes representen lo que sea que representen. Es importante notar que en este caso n
↪→ no representa la cantidad de elementos de los vectores sino la cantidad de bytes. Por
ejemplo, si quisiéramos copiar un vector de 5 enteros deberı́amos invocar a la función con
5 * sizeof(int).

En este caso de la copia está implı́cito que no me interesa entender el contenido del vector.
Es decir, el acceso a la memoria de los punteros es sólo a fines de mirar los bytes. La función no
puede adivinar de qué tipo es la memoria. Digamos, esta técnica nos resuelve el problema de
copiar memoria pero no nos servirı́a para, por ejemplo, sumar los elementos de un vector de
tipo desconocido. Eso requiere aplicar reglas de operaciones de procesador que son especı́ficas
de los tipos.

La biblioteca estándar en el encabezado <string.h> provee las funciones:

void *memcpy(void *destino, const void *origen, size t n: Exactamente la función que
acabamos de implementar. Eso sı́, tiene un return destino; en la última lı́nea, por eso el
tipo de retorno.

void *memmove(void *destino, const void *origen, size t n: Idéntica a la anterior... pe-
ro sabe detectar si hay un solapamiento entre ambos punteros. Por ejemplo, si invocáramos
memmove(v + 1, v, 10 * sizeof(int)); y aplicáramos el algoritmo que ya implemen-
tamos no harı́amos otra cosa que copiar v[0] 10 veces. Queda como ejercicio entender
esto y pensar la solución. Por lo general vamos a preferir utilizar esta función sobre la
anterior, como dijimos, hacen lo mismo.

int memcmp(const void *v1, const void *v2, size t n);: Compara los bytes de ambos
vectores, devuelve un entero menor que, igual a o mayor que cero dependiendo de si el
primer byte que difiere es respectivamente menor, igual o mayor en v1 que en v2. Es decir,
devuelve 0 sólo si recorre los n bytes y son todos iguales.
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Figura 8.6: Representación gráfica de un puntero a NULL.

Figura 8.7: Esquema del puntero a puntero del ejemplo.

8.8. El puntero NULL

En muchas aplicaciones es necesario poder tener un centinela que me diga que una variable
de tipo puntero no apunta a ningún lugar. Para eso el estándar provee la etiqueta NULL. Ejemplo:

1 int *p = NULL;

Sé que el puntero p no apunta a ninguna posición de memoria válida. Notar que no es
lo mismo que no inicializar p, si no inicializo p dado que p se inicializa en basura tampoco
apuntará a una posición de memoria válida... pero no tengo manera de validarlo.

Vamos a utilizar a NULL cuando tengamos que avisarle a una función que le pasamos un
puntero no válido o cuando una función nos quiera devolver un puntero no válido y que
nosotros sepamos que no es válido. Por ejemplo, la función fgets() devuelve un char *, y ya
vimos que al alcanzar la marca de fin de archivo la misma devuelve NULL.

Gráficamente vamos a representar los punteros a NULL con el sı́mbolo de una puesta a tierra
eléctrica (figura 8.6).

8.9. Punteros a punteros

Como se dijo, una variable de tipo puntero a cosa es capaz de almacenar posiciones de
memoria de cosas. Pero a su vez ella es una variable, por lo que tiene una dirección de memoria.

1 int i, *pi , **ppi;
2 pi = &i;
3 ppi = &pi;
4

5 **ppi = 5; // Asigno en i

(Ver figura 8.7.)
Siguiendo lo ya dicho, si pi es una variable de tipo int * entonces &pi será una variable de

tipo int **.
El tipo int ** es un “puntero a puntero a entero”, es decir, una variable que guarda direcciones

de memoria de tipo puntero a entero. Ahora bien, usualmente, de forma coloquial vamos a
referirnos a él como “doble puntero a entero”.

Esta última nomenclatura no significa nada y se adopta pura y exclusivamente por un tema
de comodidad... ¿cómodidad dónde?, comodidad cuando tengamos punteros de orden mayor.
Por ejemplo, una variable de tipo int **** formalmente será un “puntero a puntero a puntero
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Figura 8.8: Esquema del las operaciones de punteros en una matriz m[4][3].

a puntero a entero”, ¿no serı́a mucho más práctico llamarla “cuádruple puntero a entero”? Ası́ lo
haremos. Y sı́: Van a aparecer punteros de órdenes altos más adelante.

8.10. Matrices

En la sección 6.4 vimos las matrices de C, las cuales sabemos que se definen como tipo
↪→ matriz[F][C] y se accede a sus elementos utilizando dos subı́ndices: matriz[i][j]. Ahora
bien, a la vista de lo visto en este capı́tulo el operador corchetes no es otra cosa que azúcar
sintáctica para un acceso a punteros: *(*(matriz + i)+ j).

Esta última expresión es confusa, si el operador * aparece dos veces aplicado en una
expresión, ¿entonces matriz es de tipo int **? La respuesta es no, y la explicación es confusa
también.

Más allá de qué hace el lenguaje para justificar esos dos asteriscos, la explicación de cómo
hace el compilador para acceder a un elemento y qué aritmética realiza la vimos detallada en la
sección antedicha. Si no te acordás, repasala.

Recordemos que matriz[i] se traducı́a como “la iésima fila de la matriz” entonces en la
expresión *(matriz + i) matriz tiene que ser un puntero a “filas de matriz”... y efectivamente
eso es. De hecho el nombre de un arreglo es un puntero a su primer elemento matriz == &
↪→ matriz[0] su tipo es puntero a filas.

1 int matriz[F][C];
2 int (*p)[C] = matriz;

El tipo de p es “puntero a arreglos de C enteros”, lo cual tiene sentido si habı́amos presentado
a las matrices como arreglos de filas, cada uno de sus elementos será un arreglo de tantos
elementos como columnas.

Ya que estamos, sabı́amos que si tenemos una función void foo(int v[]); eso es azúcar
sintáctica para void foo(int *v). Análogamente, una función void foo(int m[F][C]); es
azúcar sintáctica para void foo(int (*m)[C]);. Eso explica lo ya visto en la sección 6.4.1.

Entonces, si cuando pasamos matrices a funciones los tipos serán como el tipo de p en
nuestro ejemplo, sabemos que p se puede utilizar para acceder a los elementos de una matriz
con doble ı́ndice.

Ahora sı́ entonces si p es puntero a fila, *(p + i) será moverse i unidades de sizeof(int
↪→ [C])3 en memoria y desreferenciar (ver figura 8.8). El resultado de eso será un arreglo de
C enteros, o mejor dicho, un puntero al primer elemento de ese arreglo. Es decir, el operador
asterisco en este caso lo único que hace es cambiar el tipo del puntero, no hace ningún tipo de
acceso a memoria ni desreferencia nada. Las expresiones p + i y *(p + i) evalúan a la misma

3Que es lo mismo que decir C * sizeof(int).
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dirección de memoria, sólo que la primera es de tipo int (*)[C] mientras que la segunda de
tipo int∗, que es el tipo con el que apuntamos arreglos.

A partir de ahı́ el segundo ı́ndice j es consistente con un puntero a entero.
Esto que se explicó hasta aquı́ es la operatoria que hace internamente el lenguaje para

permitir el uso del doble ı́ndice tratándose de memoria unidimensional. Todo, todo, todo es
azúcar sintáctica para no operar como realmente es que es:

1 int matriz[F][C];
2 int *p = &matriz [0][0];
3 p[i * C + j]; // Accedo a matriz[i][j]

Obviamente vamos a abrazar la azúcar sintáctica y usar los dobles corchetes.

8.11. Punteros a funciones

Si bien se incluyen dentro del mismo capı́tulo por un tema de orden, los punteros a funciones
poco tienen que ver con los punteros. Los punteros que vimos hasta ahora pueden almacenar
direcciones de memoria de datos y funcionalmente sirven para acceder a esa memoria y
modificarla. Los punteros a funciones también almacenarán direcciones, pero en este caso no
de datos sino de código y funcionalmente servirán para hacer llamadas a ese código.

Cuando nuestro código se compila y enlaza, el mismo forma una secuencia de instrucciones
de código máquina, donde el procesador ejecuta la instrucción que le dice el program counter4

(PC). Al realizar una llamada a una función se reemplaza el PC por la posición en código
donde se encuentra esa subrutina. Esto dependerá de la arquitectura del procesador, pero no
necesariamente la memoria de datos y la memoria de programa forman parte del mismo bloque
de memoria. Los punteros a funciones almacenan la posición de funciones.

Más allá de la introducción, los punteros a funciones son sencillos de utilizar (aunque
bastante feos de declarar):

1 int (* conversor)(int); // conversor es un puntero a funciones
↪→ de firma: int f(int);

2 conversor = toupper; // int toupper(int) @ ctype.h:
↪→ Convierte un car ácter a may ú sculas.

3

4 putchar(conversor(’a’)); // Imprime ’A’.

Antes de entrar en sintaxis, funcionalmente el código anterior define un puntero el cual se
hace apuntar a la función toupper(), luego, invocar al puntero como si fuera una función es
equivalente a llamar a la función toupper(). Como conversor es un puntero ası́ como en el
ejemplo apunta a toupper() podemos hacer que apunte a cualquier otra función que tenga la
firma int f(int);, es decir, podemos usar ese puntero para apuntar a funciones diferentes
según el contexto, utilizando el mismo código. Atentos a la sintaxis: Cuando asignamos el
puntero decimos conversor = toupper; notar que no hay paréntesis, no estamos llamando a
la función toupper(), sólo estamos escribiendo su nombre, eso constituye un puntero a ella.

Como invocar a un puntero a función implica llamar a una función, el compilador tiene
que saber los parámetros de la función a ser llamada. Es por eso que los punteros a función
pueden apuntar a funciones con determinados parámetros. Es decir, el tipo del puntero a
función está dado por los parámetros que toma y recibe la función a ser apuntada. En el
ejemplo estamos declarando int (*conversor)(int);, notar que esta sintaxis es similar al
prototipo de una función, sólo que se encerró entre paréntesis y con un asterisco el nombre
de la función. Si int conversor(int); declara una función conversor que toma un entero y

4Ver capı́tulo 7.2.
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devuelve un entero, int (*conversor)(int); declara un puntero a función conversor que
apunta a funciones que toman un entero y devuelven un entero.

¿Para qué sirven los punteros a funciones? Su uso principal es desacoplar problemas. Por
ejemplo, quisiera convertir a mayúsculas una cadena de caracteres. Para resolver ese problema
tendrı́a que recorrer la cadena de caracteres y luego para cada carácter deberı́a convertirlo a
mayúsculas. Tal vez yo sé cómo convertir a mayúsculas pero no sé cómo recorrer una cadena5 o
viceversa. El código del problema es algo ası́ como:

1 void convertir_a_mayusculas(char cadena []) {
2 for(size_t i = 0; cadena[i] != ’\0’; i++)
3 cadena[i] = toupper(cadena[i]);
4 }

Bien. Ahora, ¿cómo hacemos si queremos convertir a minúsculas? Podemos copiar y pegar
la función completa y cambiar la llamada a toupper() por tolower(). ¿Y si quisiéramos hacer
otra conversión diferente? A estas alturas del curso sabemos que repetir código nunca suele ser
una solución correcta. Como decı́amos antes, el problema de recorrer y aplicar algo en todos
los elementos de una cadena es un problema diferente del qué aplicar. Si pudiéramos separar
los problemas evitarı́amos duplicar:

1 void convertir(char cadena[], int (* conversor)(int)) {
2 for(size_t i = 0; cadena[i] != ’\0’; i++)
3 cadena[i] = conversor(cadena[i]);
4 }
5

6 ...
7 convertir(cadena , toupper); // Convierte a may ú sculas
8 convertir(cadena , tolower); // Convierte a min ú sculas

Incluso, imaginemos que queremos reemplazar todas las vocales por equis. Podemos hacer:

1 int censurar_vocales(int c) {
2 if(c == ’a’ || c == ’e’ || c == ’i’ || c == ’o’ || c == ’u’)
3 return ’x’;
4 return c;
5 }
6

7 ...
8 convertir(cadena , censurar_vocales);

Como dijimos: Desacoplamos el problema de recorrer la cadena del problema de cómo la
transformamos. La función convertir() puede recibir la función que queramos que haga la
conversión que nos interese.

8.11.1. qsort()

Si el ejemplo que mencionamos te pareció trillado cambiémoslo por un ejemplo más concreto.
¿Sabés ordenar los elementos de un vector de forma eficiente? Probablemente no. Ahora bien,
si tuvieras dos elementos, ¿podrı́as decir cuál deberı́a ir primero en un vector ordenado? Dicho
de otra manera, el problema de ordenar no depende del criterio de ordenamiento, ¿no?

Por ejemplo, tenemos un vector de flotantes. Si quisiéramos ordenarlo de forma descendente
para cualquier par de elementos a, b, si a > b entonces a deberı́a ir antes que b.

5Es un ejemplo, tratá de seguirlo... a estas alturas del curso todos deberı́amos saber recorrer cadenas.
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En la sección 8.7.1 vimos a la función memcmp() que comparaba dos vectores y devolvı́a
un entero para codificar cuál era “menor” al otro. Bueno, lo que devolvı́a la función esa es la
convención de C siempre que queramos hacer funciones que devuelvan cosas: Se reciben dos
elementos a y b, si a < b se devuelve un número menor a cero, si a = b se devuelve cero y si
a > b se devuelve un número positivo. Donde cuando decimos menor o mayor queremos decir
literalmente se ordenan antes o después.

Volviendo a nuestro problema de los flotantes, podrı́amos definir:

1 int comparar_descendente(const float *a, const float *b) {
2 if(*a > *b)
3 return -1;
4 if(*a < *b)
5 return 1;
6 return 0;
7 }

Recordar que querı́amos ordenar de forma descendente, entonces nuestra relación de orden es
al revés que lo esperado.

Sin saber ordenar bien podemos definir un criterio para ordenar. ¿Y cómo ordenamos? En
<stdlib.h> tenemos definida la función void qsort(void *base, size_t nmemb, size_t
↪→ size, int (*compar)(const void *, const void *));. La función recibe el puntero al
comienzo de un arreglo, la cantidad de elementos del arreglo, el tamaño de cada uno de los
elementos del arreglo y finalmente el puntero a la función que le dice cómo ordenar. Mientras
qsort() ordene va a invocar a la función que le hayamos pasado pasándole el puntero a dos
elementos y es la función la que le va a indicar cuál está antes de cuál.

Para ordenar un vector de flotantes de forma descendente, por ejemplo:

1 float v[100] = {...}
2

3 qsort(v, 100, sizeof(float), comparar_descendente);

Ahora bien, la firma de nuestra función no es idéntica a la de la función que espera
recibir qsort() dado que espera recibir una con punteros a void y nosotros tenemos con
punteros a float. Si lo compilamos y lo ejecutamos vamos a ver que compila... ahora bien,
con una advertencia de compilación fuerte que nos dice que estamos usando punteros de tipo
incompatible. Podemos resolver eso creando una función “wrapper” (envoltorio) que acomode
los parámetros:

1 int comparar_descendente_void(const void *a, const void *b) {
2 return comparar_descendente(a, b);
3 }

y luego llamar a qsort con esta función, que es una función boba que no hace otra cosa que
llamar a la otra.

8.11.2. typedef

Como ya vimos el uso de punteros a funciones es relativamente sencillo, pero sı́ es confusa
la forma de declaración de las variables. Imaginá cómo se complicarı́a querer definir un vector
de funciones de comparación para pasarle a qsort() por ejemplo. Para mejorar esto podemos
hacer uso de typedef:

1 typedef int (* comparacion_t)(const void *, const void *));

74



NOTAS DE TA130 SEBASTIÁN SANTISI

Teniendo esta declaración puedo reescribir el prototipo de qsort() como void qsort(void
↪→ *base, size_t nmemb, size_t size, comparacion_t compar);, ¿mejora?

Quiero un arreglo de funciones de comparación:

1 comparacion_t arreglo [2] = {comparar_descendente_void , strcmp };

¿Mejora?
Quiero llamar a qsort() sin escribir un wrapper:

1 qsort(v, 100, sizeof(float), (comparacion_t)comparar_descendente);

¿Mejora? Y sı́, podrı́a haber casteado en el ejemplo anterior... ¿cómo? Sı́, mejora.
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Capı́tulo 9

Estructuras y tipos enumerativos

Componen este capı́tulo los temas de estructuras, tipos enumerativos y tablas de búsqueda.
Ahora bien, sólo vamos a desarrollar el primero de estos, dado que para el segundo hay un
apunte preexistente en la sección de Material de la página web de la materia.

9.1. Estructuras

Hasta ahora vimos que podemos declarar variables sueltas o que podemos armar bloques
de memoria consecutivos de n elementos del mismo tipo. Ahora bien, hay problemas en los
cuales una misma entidad necesita múltiples variables de diferente tipo (o que no tiene sentido
pensar como una secuencia como en el caso de los vectores). Por ejemplo, si quisiera representar
a una persona ella tendrı́a un nombre, un apellido, una fecha de nacimiento, un DNI, etc. Y, tal
vez, si tuviera que representar a una persona podria hacerlo con una determinada cantidad de
variables, pero si tuviera que representar a muchas personas ese enfoque serı́a desordenado.
Para eso el lenguaje provee las estructuras.

La construcción

1 struct persona {
2 char nombre [30];
3 int dni;
4 edad_t edad;
5 };

define un nuevo tipo llamado struct persona que contiene dentro tres “miembros” que se
van a comportar como un arreglo de 30 caracteres, un entero y lo que sea que represente el tipo
edad_t1.

Teniendo este tipo podemos declarar y definir:

1 struct persona persona1 = {"Juan", 42123435 , 20};
2

3 struct persona persona2 = {
4 .nombre = "Maria",
5 .dni = 92134245 ,
6 .edad = 19,
7 };

1Recordar la sección 3.7.
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En el primer caso tenemos que enumerar las diferentes inicializaciones de los miembros en
el mismo orden en el que se declararon en la definición del tipo, mientras que en el otro nos
independizamos.

Una vez creada la variable podemos acceder a los miembros con el operador .:

1 printf("Nombre:␣ %s,␣DNI:␣ %d,␣Edad:␣ %d\n", persona1.nombre ,
↪→ persona1.dni , persona1.edad);

Similar a los arreglos, el lenguaje C no provee herramientas para manipular una estructura.
Pero cada uno de los miembros se comporta como una variable de un tipo conocido para el
cual C sı́ provee estas herramientas.

9.1.1. typedef

Notar que el tipo de las estructuras se compone de dos palabras: struct más el nombre de
la estructura. Muchas veces por comodidad se prefiere utilizar un typedef para englobar al
tipo:

1 typedef struct persona persona_t;

Incluso podrı́a ya declararse la estructura con typedef:

1 typedef struct {
2 char nombre [30];
3 int dni;
4 edad_t edad;
5 } persona_t;

Notar que en este caso el nombre del tipo va después de la llave que concluye la estructura,
a diferencia de la definición vista antes.

9.1.2. Asignación de estructuras

En el lenguaje C la asignación de una estructura en otra es azúcar sintáctica para una
llamada a memcpy():

1 persona_t a = {"Juan", 42123435 , 20};
2

3 persona_t b = a; // Equivalente a memcpy (&b, &a, sizeof(
↪→ persona_t));

Notar que, a contramano del criterio minimalista de las operaciones de C, una asignación de
estructuras puede ser tremendamente ineficiente dado que el sizeof de una estructura puede
ser arbitrariamente grande.

Esto toma relevancia sobretodo cuando implementamos funciones:

1 void imprimir_persona(persona_t persona) {
2 printf("Nombre:␣ %s,␣DNI:␣ %d,␣Edad:␣ %d\n", persona.nombre ,

↪→ persona.dni , persona.edad);
3 }

En esta función cada vez que la misma sea invocada se copiará en la pila cada uno de los bytes
de la variable que viva en la función invocante.

Es por esto que prácticamente siempre pasaremos las estructuras a las funciones a través
de punteros:
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1 void imprimir_persona(const persona_t *persona) {
2 printf("Nombre:␣ %s,␣DNI:␣ %d,␣Edad:␣ %d\n", (* persona).nombre ,

↪→ (* persona).dni , (* persona).edad);
3 }

Notar como pasamos de copiar en el stack algo que incluye un vector de 30 caracteres a
simplemente recibir una dirección de memoria, lo que es justamente el comportamiento que C
tiene para los arreglos.

9.1.3. Punteros a estructuras

Ya vimos que para acceder a un miembro de una estructura tenemos el operador ., y en el
ejemplo anterior vimos que la sintaxis se empasta cuando tenemos punteros a estructuras:

1 persona_t a;
2 persona_t *b = &a;
3

4 a.dni = 12678145;
5 (*b).dni = 12678145;
6 \begin{lstlisting}
7 (Los par é ntesis son necesarios por precedencia de operadores .)
8

9 Bueno , para simplificar la sintaxis el lenguaje nos provee otra az
↪→ ú car sint á ctica como la que nos di ó para acceder a elementos
↪→ de punteros:

10 \begin{lstlisting}
11 b->dni = 12678145;

El operador flecha2 a->x no es otra cosa que azúcar sintáctica para (*a)->x.
Para distinguir rápido cuándo se usa punto y cuánto se usa flecha simplemente hay que

recordar si tenemos una estructura o un puntero a estructura. Si tenemos estructura va punto,
si tenemos puntero a estructura va flecha.

9.1.4. Tamaño de las estructuras (alineación)

Supongamos el siguiente ejemplo:

1 typedef struct {
2 signed char piso;
3 int numero;
4 } aula_t;
5

6 int main(void) {
7 aula_t aula = {2, 202};
8

9 printf(" %zd\n", sizeof(aula.piso)); // Imprime 1
10 printf(" %zd\n", sizeof(aula.numero)); // Imprime 4
11 printf(" %zd\n", sizeof(aula)); // Imprime 8 !!!
12

13 return 0;
14 }

2Lo llamamos ası́ pero es un guión seguido de un signo de mayor que.
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La memoria que contiene a la estructura tiene que tener capacidad al menos para cada uno
de sus miembros, pero no hay garantı́as de que tenga exactamente ese tamaño3.

La explicación de este comportamiento tiene que ver con detalles de implementación de
hardware. Sin ahondar de forma superficial podemos decir que los diseñadores de procesadores
alguna vez dijeron, si los enteros miden 4 bytes y la gente va a poner muchos enteros en
memoria... ¿por qué no forzamos a que los acomoden en posiciones múltiplas de 4 de memoria?
Y podremos preguntarnos qué se gana con eso, bueno, si los enteros están en posiciones
múltiplas de 4, los últimos dos bits de esa posición van a ser siempre cero. Y si son siempre
cero podemos ahorrarnos de routear dos vı́as en todos los buses de datos. Eso es una reducción
importantı́sima en la complejidad del procesador, ¿por qué no hacerlo?

Ahora bien, la contrapartida de forzar a que la memoria esté en posiciones particulares
(esto se llama “alineación”) es que el compilador se ve forzado a dejar espacios (que se llaman
“padding”) entre las variables para que todas estén alineadas según su tipo.

En nuestro ejemplo, podrı́amos suponer que entre el piso y el aula hay 3 bytes de padding
para que si la estructura comienza en una posición múltiplo de 4, entonces la variable entera
también lo haga.4

En nuestro curso vamos a asumir que SIEMPRE hay paddings en las estructuras, que es la
postura más independiente de la plataforma que podemos tomar.

9.1.5. Asignación (otra vez) y comparación

Volviendo a las operaciones, ya sabemos que la asignación de estructuras es azúcar sintáctica
para memcpy(), es decir cuando decimos b = a (siendo ambas estructuras) se copia toda la
memoria de a en b, y no hay nada de malo en eso. Una será una copia idéntica de la otra y
serán iguales. Pero tenemos que tomar en cuenta que esta operación copia todo, inclusive el
padding que contiene basura5.

Otra vez: No hay nada de malo con esto. Sólo estamos describiendo el comportamiento. (Y
tal vez sı́ habrı́a algo malo si, por ejemplo, serı́a más eficiente copiar la cadena con strcpy()
para economizar movimiento de memoria.)

Ahora bien, ¿qué pasa al hacer?:

1 if(a == b) {
2 ...
3 }

Análogamente a la asignación, la comparación es en realidad una llamada a memcmp(). Y
ahı́ sı́ está mal. Si comparamos la memoria de a y b byte a byte estaremos comparando no sólo
el nombre, el DNI y la edad, si no además toda la basura que viene en la memoria, tanto en el
padding como en lo que haya después del ’\0’ de las cadenas.

El operador de comparación podrı́a decirme que son diferentes dos estructuras que tienen
exactamente lo mismo asignado en sus miembros. La única manera de comparar estructuras es
haciéndolo miembro a miembro:

1 if(a.dni == b.dni && a.edad == b.edad && strcmp(a.nombre , b.nombre
↪→ ) == 0) {

2 ...
3 }

3No confundir este 8 con el 8 que habı́amos visto en la sección 6.3, el 8 en este ejemplo es casualidad.
4Y podés preguntarte por qué no acomodar la estructura en memoria de tal manera que la variable entera quede

en una posición válida y usar 5 bytes. Bueno, la respuesta tiene que ver con arreglos. Un arreglo es una sucesión
de variables consecutivas en memoria, no habrı́a manera de que dos estructuras de 5 bytes que contienen un entero
adentro se puedan poner consecutivas en memoria y que el entero quede alineado.

5Y dicho sea de paso, en nuestros ejemplos tenı́amos char nombre[30] = "Juan";, también hay 25 bytes de basura
ahı́ después del ’\0’.
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9.2. TIPOS ENUMERATIVOS CAPÍTULO 9. ESTRUCTURAS Y TIPOS ENUMERATIVOS

9.2. Tipos enumerativos

Ver el apunte en la web de la materia.

9.3. Tablas de búsqueda

Ver el apunte en la web de la materia.
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Capı́tulo 10

Manejo de bits

Omitiremos este capı́tulo dado que ya hay un apunte sobre el tema en la página web de la
materia.
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Capı́tulo 11

Memoria dinámica

11.1. Introducción

Hasta el momento hablamos de diferentes lugares de la memoria: El stack, la memoria data,
el lugar donde viven las variables globales. Toda esa memoria forma parte del mismo bloque
de memoria: La memoria que el sistema operativo le asigna de forma estática a cada proceso.
Es decir, cada vez que se arranca una instancia de un programa en una computadora el sistema
operativo le reserva una equis cantidad de memoria para que ahı́ adentro el programa haga
lo que quiera. Esta cantidad dependerá de la configuración, pero es un tamaño de no más de
un par de megabytes. Ahora bien, si bien esta suma de memoria puede sobrar para algunas
aplicaciones, para muchas será insuficiente.

Por fuera de esta limitación el modelo de memoria de stack que estamos viendo tiene una
limitación importante en el ámbito de vida de la memoria. Las funciones de más alto nivel
pueden compartirle su memoria a las de más bajo nivel, a través de punteros, pero lo contrario
no funciona. Dado que la memoria donde viven las funciones es volátil, si una función de bajo
nivel devolviera un puntero ese puntero pasarı́a a ser inválido en el mismo momento en el que
la función termina, dado que el stack se desocupa. Esto plantea un tema de diseño, donde si se
requiere que una función de bajo nivel manipule memoria es la función invocante la que tiene
que prever reservar esa memoria previamente, con lo cual se invirten las responsabilidades,
porque para conocer el tamaño de esa memoria hay que conocer el problema a resolver lo cual
viola la abstracción de delegar en funciones.

Estos dos párrafos plantean tres problemas donde el esquema de memoria visto es insufi-
ciente:

Cuando el problema es grande.

Cuando no puedo prever el tamaño del problema (y no puedo apostar a un número
grande por el ı́tem anterior).

Cuando requiero que una función devuelva memoria que le sobreviva.

11.2. El heap

Como se dijo, cuando el sistema operativo crea un proceso le asigna una porción de memoria
de tamaño fijo que es lo que denominamos el stack. Por diseño el stack tiene que tener un
tamaño pequeño dado que cada proceso utiliza esa memoria y puede haber indefinidos procesos.
Ahora bien, hablamos de que el stack de cada aplicación suele ocupar un par de megabytes,
pero una computadora tiene memoria que se contabiliza en gigabytes. La memoria que no
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constituye el stack se denomina “heap”1, y podemos utilizarla gestionándola con el sistema
operativo.

A diferencia del stack que es fijo, equitativo para todos los procesos y está garantizado2 en
el heap podemos pedir la cantidad de memoria que queramos, cada proceso gestiona la propia
(si la necesita) y no hay ninguna garantı́a de que esa memoria esté disponible.

El protocolo para la administración de la memoria es sencillo: Se le pide al sistema operativo
una determinada cantidad de bytes de memoria. Si el sistema operativo los tiene, reserva
esa memoria para nuestro proceso y nos entrega un puntero al primer byte de ese bloque
de memoria. Cuando nosotros no necesitemos más la memoria, tenemos que devolvérsela al
sistema operativo. Una vez devuelta la memoria la misma ya no nos pertenece.

En este curso insistiremos particularmente en dos cosas: Todo pedido de memoria puede
fallar y toda la memoria que se pida debe ser devuelta.

Cabe preguntarse qué pasa con la memoria de heap que pidió un proceso cuando el mismo
termina. En un sistema operativo moderno el mismo deberı́a liberar por sı́ solo todos los recursos
asociados a ese proceso. Ahora bien, para nuestra filosofı́a, no nos importa qué haga el sistema
operativo después. Si un recurso lo reservamos explı́citamente, ese mismo recurso lo vamos a
liberar explı́citamente. Además, estamos en un curso para alumnos de Ingenierı́a Electrónica, las
aplicaciones que hacemos los electrónicos generalmente nunca terminan mientras el dispositivo
esté energizado.

11.3. malloc() y free()

Como ya se dijo los pedidos de la memoria se hacen por una determinada cantidad de
bytes. Ahora bien nosotros pedimos memoria de forma utilitaria porque necesitamos almacenar
valores de determinado tipo. Tiene sentido entonces que ese pedido lo pensemos como unidades
de determinado tipo, y además, la referenciemos con punteros consistentes.

El siguiente código:

1 # include <stdio.h>
2 ...
3 int *v = malloc (20 * sizeof(int));
4 ...
5 free(v);

pide la memoria suficiente como para un bloque de 20 enteros en memoria, la función malloc()
hace ese pedido. Como se trata de enteros los vamos a referenciar con el puntero v que es
a enteros. Luego del pedido de memoria podremos manipular este bloque como si fuera un
arreglo de 20 elementos enteros... que de hecho lo es, la única diferencia es que vive en el heap
en vez del stack, cosa que es indistinguible para nosotros. Finalmente cuando no necesitemos
más esa memoria tendremos que liberar los recursos con free().

Como regla mnemotécnica, un pedido de memoria siempre se ve tipo *p = malloc(n *
↪→ sizeof(tipo));. Tiene sentido, si quiero pedir memoria para elementos de tamaño tipo
y la función me va a devolver un puntero a uno de ellos necesito apuntarlo con un tipo *.
Dependiendo del problema n tal vez valga 1 y se omita. Y dependiendo del problema, si justo
estuviera pidiendo memoria para char podrı́amos omitir el sizeof(tipo) dado que es el único
caso en el que está garantizado que valga 1. Por lo general, para hacer más uniformes los

1Y no tenemos una buena traducción al castellano, ası́ que utilizaremos la palabra en inglés. Literalmente heap es
montón, o montı́culo.

2Si el sistema operativo se quedara sin espacio para el stack, directamente no podrı́a lanzar el proceso, ası́ que si hay
proceso es porque habı́a espacio para su stack.
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pedidos eligiremos ponerlo3.
En la sección anterior dijimos que en este curso insistirı́amos particularmente con dos

cuestiones. La primera era liberar la memoria, cosa que hicimos, la segunda era que los pedidos
de memoria podı́an fallar, cosa que no hicimos. La función malloc() devuelve un puntero
válido cuando hay memoria disponible y NULL cuando el sistema operativo no puede satisfacer
nuestro pedido. Qué hacer ante una falla de memoria dependerá del problema, pero validarlo y
tomar una decisión es imprescindible.

En el caso anterior deberı́amos tener un código de manejo de error:

1 int *v = malloc (20 * sizeof(int));
2 if(v == NULL) {
3 // Error
4 }

De más está decir que si falla el pedido de memoria no hay nada que liberar.
Supongamos una función que recibe una cadena de caracteres y devuelve una cadena igual

pero en mayúsculas:

1 char *cadena_a_mayusculas(const char *s) {
2 char *nueva = malloc(strlen(s) + 1);
3 if(nueva == NULL)
4 return NULL;
5

6 for(size_t i = 0; (nueva[i] = toupper(vieja[i])); i++);
7

8 return nueva;
9 }

Como se ve, luego de pedir la memoria la misma se valida, si la misma fallara la función
completa va a fallar devolviendo NULL, no hay nada que esta función podrı́a hacer si no tuviera
la memoria adecuada. Ahora bien, nuestra función en cierta medida hereda el comportamiento
de malloc(). Si nuestra función hace lo que tiene que hacer devuelve un puntero a un bloque
de memoria del heap y si falla devuelve un puntero inválido. Es decir, el que invoque esta
función va a tener que tener las mismas precauciones que si invocara a malloc(). Por ejemplo:

1 int main(void) {
2 char *s = cadena_a_mayusculas("hola");
3 if(s == NULL)
4 return 1;
5

6 printf(" %s\n", s);
7

8 free(s);
9 return 0;

10 }

Cuando tengamos funciones que manipulan memoria dinámica vamos a tener que ser
conscientes todo el tiempo de si las mismas pueden fallar y de liberar los recursos.

Volviendo a la función free() la misma recibe de parámetro un puntero devuelvo previa-
mente por malloc(). No un puntero al bloque, el mismo puntero que devolvió malloc(). La
función no libera “el puntero”, entendiendo por eso a la variable, sino la memoria referenciada

3Salvo algunos ejemplos en este mismo capı́tulo, donde estamos más interesados en explicar la operatoria que en en
hacer código consistente y elegante.
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por ese puntero, la variable vive en el stack. Por más que ahora empecemos a poner estructuras
cada vez más complejas en el heap, las variables que las referencien siempre estarán en el stack.

11.4. Pérdidas de memoria

¿Qué tienen en común estos dos bloques?

1 int *p = malloc (10 * sizeof(int));
2 p = malloc (20 * sizeof(int));
3

4 char *s = malloc (5 * sizeof(char));
5 s = "hola";

En ambos casos asigno memoria devuelta por malloc() a un puntero y acto seguido piso
el valor del puntero. ¿Cuál serı́a la consecuencia de esto? La memoria quedó en un estado
inaccesible. Es decir, no puedo recuperar el puntero adonde tengo mis bytes pero tampoco
puedo liberarla porque para llamar a free() deberı́a haber conservado ese puntero.

Cuando pasa eso se dice que hubo una pérdida de memoria, o un memory leak. Y es un
error grave en mi programa, porque si mi programa repetidas veces tuviera pérdidas de
memoria eventualmente podrı́a consumir todos los recursos de la computadora sin manera de
recuperarse.

11.5. Valgrind

A diferencia de otros problemas, identificar memoria no liberada o pérdidas de memoria es
muy dificultuoso dado que, a menos que caigamos en un caso extremo donde agotemos toda la
memoria, es una falla invisible mirando el comportamiento del programa. Para detectar estos
problemas existen herramientas especializadas como Valgrind.

Antes de entrar en Valgrind volvamos a GCC. Cuando nosotros compilamos convertimos
código fuente en código máquina, y eso es lo que contiene el ejecutable. Ahora bien, si queremos
depurar nuestro ejecutable de poco nos sirve saber en qué instrucción de código máquina hay
una falla. Querrı́amos saber a qué instrucción de código fuente se corresponde cada una de las
instrucciones de código máquina. Cuando compilamos podemos habilitar que el compilador
incluya información de debugging en nuestro ejecutable, que es básicamente esto, incluir la
relación entre fuente y compilación. Para ello en GCC podemos agregar el parámetro -g en la
lı́nea de compilación.

Supongamos el siguiente código:

codigo.c

1 # include <stdlib.h>
2

3 int main(void) {
4 char *v = malloc (10);
5 return 0;
6 }

Si compilamos y ejecutamos:

$ gcc -g codigo.c -o codigo
$ ./codigo
$

85
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efectivamente no veremos ningún error, el programa funciona correctamente. Sin embargo
nosotros sabemos que olvidamos liberar la memoria pedida.

Si ejecutamos nuestro programa a través de Valgrind en cambio obtendremos:

$ valgrind ./codigo
==10746== Memcheck, a memory error detector
==10746== Copyright (C) 2002-2017, and GNU GPL’d, by Julian Seward et al.
==10746== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==10746== Command: ./codigo
==10746==
==10746==
==10746== HEAP SUMMARY:
==10746== in use at exit: 10 bytes in 1 blocks
==10746== total heap usage: 1 allocs, 0 frees, 10 bytes allocated
==10746==
==10746== LEAK SUMMARY:
==10746== definitely lost: 10 bytes in 1 blocks
==10746== indirectly lost: 0 bytes in 0 blocks
==10746== possibly lost: 0 bytes in 0 blocks
==10746== still reachable: 0 bytes in 0 blocks
==10746== suppressed: 0 bytes in 0 blocks
==10746== Rerun with --leak-check=full to see details of leaked memory
==10746==
==10746== For counts of detected and suppressed errors, rerun with: -v
==10746== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
$

Focalicémosnos en el “heap summary” (resumen del heap) dice “en uso a la salida 10 bytes
en 1 bloque”, además me dice que hice un malloc() pero ningún free(). Más adelante está el
resumen de pérdidas, que me dice que perdı́ de forma definitiva 10 bytes en un bloque.

Casi al final nos da una sugerencia, nos dice que volvamos a correr Valgrind pero esta vez
agregando --leak-check=full. Si lo hiciéramos obtdrı́amos (la misma salida de antes pero
además):

$ valgrind --leak-check=full ./codigo
...
==10799== 10 bytes in 1 blocks are definitely lost in loss record 1 of 1
==10799== at 0x4C31B0F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd6

4-linux.so)
==10799== by 0x10865B: main (codigo.c:4)
...
$

Este nuevo bloque nos dice que el pedido de memoria fue en la función main() y más
especı́ficamente en codigo.c:4, es decir, en la lı́nea 4 del archivo codigo.c4.

Valgrind no nos va a decir dónde deberı́amos haber liberado la memoria, eso es una
responsabilidad nuestra como programadores. Lo que Valgrind nos va a inicar es dónde se
pidió la memoria que luego no se liberó.

Agreguemos el free() en la lı́nea previa al return y corramos de nuevo:

$ valgrind --leak-check=full ./codigo
...

4Si no hubiéramos compilado con -g verı́amos sólo que tenemos un error en 0x10865B, la posición en el código
máquina: Compilá con -g.

86



NOTAS DE TA130 SEBASTIÁN SANTISI

==11032== HEAP SUMMARY:
==11032== in use at exit: 0 bytes in 0 blocks
==11032== total heap usage: 1 allocs, 1 frees, 10 bytes allocated
==11032==
==11032== All heap blocks were freed -- no leaks are possible
...
$

Además de que el resumen nos dice que la cantidad de pedidos y liberaciones es la misma,
textualmente nos dice “Todos los bloques del heap fueron liberados – no hay pérdidas posibles”.
Ese es el mensaje que esperamos obtener que marca la validez de nuestro programa.

Más allá de que el uso primario de Valgrind sea para detectar memoria no liberada o perdida,
Valgrind también nos va a avisar cuando utilicemos memoria no inicializada, escribamos en
memoria que no nos pertenece, etc.

11.6. realloc()

Supongamos el problema de leer números de stdin hasta alcanzar la marca de final de
archivo. Este es un problema en el cual al momento de empezar desconocemos el tamaño final
que vamos a tener. En estos casos lo que hay que hacer es variar el tamaño de la memoria
conforme avancemos con la solución.

Supongamos que tenemos una determinada memoria inicial pedida:

1 char *p = malloc (5);

y que la previsión de 5 caracteres se quedó corta y queremos extender la memoria de p a 10.
Siempre podemos hacer:

1 char *aux = malloc (10);
2 if(aux == NULL)
3 // Fall é, no hay nada que pueda hacer
4 memcpy(aux , p, 5);
5 free(p);
6 p = aux;

Alguien puede decir “pero eso no redimensiona el tamaño de p, simplemente se creó un
nuevo bloque de mayor tamaño y se apuntó a p”. Exactamente. Si miro p antes del procedimiento
tenı́a 5 bytes, después tiene 10, el contenido que estaba en esos 5 bytes está preservado en el
nuevo bloque. Eso es redimensionar la memoria.

Este algoritmo exacto está implementado en la función realloc(). La función realloc()
recibe un puntero a un bloque de memoria dinámica y un nuevo tamaño. Se encarga de hacer
el pedido de nueva memoria, rescatar el contenido y liberar el bloque recibido. En caso de no
poder pedir la memoria nueva simplemente devuelve NULL y no modifica el bloque recibido.

Un ejemplo de uso serı́a:

1 char *p = malloc (5);
2 ...
3 char *aux = realloc(p, 10);
4 if(aux == NULL)
5 // No pude redimensionar
6 else
7 p = aux;
8 ...
9 free(p);
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11.7. CASOS DE BORDE CAPÍTULO 11. MEMORIA DINÁMICA

Nunca debe hacerse p = realloc(p, n);, dado que si no se pudiera generar la nueva
memoria la función devolverı́a NULL y perderı́amos la referencia a p teniendo una fuga de
memoria. Siempre llamaremos a realloc() utilizando un puntero auxiliar.

Notar que el tamaño que le pasamos a realloc() es el nuevo tamaño deseado. El mismo
puede ser tanto mayor como menor que el tamaño previo. La función realizará el memcpy por el
mı́nimo entre la cantidad de bytes del tamaño viejo y el nuevo.

11.7. Casos de borde

Un par de casos de borde contemplados en el estándar que hacen más sencilla la implemen-
tación de algoritmos:

malloc(0) =⇒ NULL.

free(NULL) =⇒ No hace nada.

realloc(NULL, n) ⇐⇒ malloc(n).

realloc(p, 0) ⇐⇒ free(p).

Por ejemplo:

1 /* Lee enteros de stdin hasta agotar la entrada , devuelve el
2 vector de enteros le ı́dos por el nombre y la cantidad de enteros
3 a trav és de n. */
4 int *leer_enteros(size_t *n) {
5 int *v = NULL;
6 *n = 0;
7

8 char buffer [100];
9 while(fgets(buffer , 100, stdin) != NULL) {

10 int *aux = realloc(v, (*n + 1) * sizeof(int));
11 if(aux == NULL) {
12 free(v);
13 return NULL;
14 }
15 v = aux;
16 v[(*n)++] = atoi(buffer);
17 }
18

19 return v;
20 }

(¿Es buena idea descartar todo lo leı́do si no hay memoria? Es un criterio, tal vez no sea el
mejor.)

El código anterior utiliza dos de los casos de borde que se mencionaron. Te queda de tarea
identificar cuáles y desarrollar cómo deberı́a haber sido el código en caso de que el estándar no
especificara que esos casos son seguros.

Sobre el código anterior notar que redimensionamos por cada lı́nea leı́da, esto fuerza un
llamado a malloc() y a memcpy() por lı́nea leı́da... donde a medida que se avanza hay que
copiar más y más y más. Profundizaremos más sobre estos aspectos de eficiencia más adelante,
pero esta solución es muy ineficiente. Necesita copiar una cantidad de bytes proporcional al
cuadrado de la cantidad de lı́neas leı́das.
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11.8. Matrices dinámicas

Siguiendo con lo ya presentado en la sección 8.10 si quisiéramos crear una matriz en el
sentido de las matrices estáticas de C podrı́amos hacer algo como:

1 float (* matriz)[cols] = malloc(filas * sizeof(float [cols]));
2 ...
3 matriz[i][j] = 2.5;

Si hiciéramos esto tendrı́amos toda la memoria en un bloque monolı́tico de filas * cols *
↪→ sizeof(float) bytes y cuando accedemos con el doble corchete lo hacemos en el sentido
unidimensional que ya vimos, como un equivalente a *(matriz + i * cols + filas).

Si bien se puede hacer esto, este no es el enfoque preferido cuando utilizamos memoria
dinámica. Con memoria dinámica efectivamente podemos generar un arreglo dinámico de
arreglos dinámicos, donde efectivamente haya una bidimensionalidad.

El enfoque dinámico es (se omiten las validaciones):

1 float ** matriz = malloc(filas * sizeof(float *));
2 for(size_t f = 0; f < filas; f++)
3 matriz[f] = malloc(cols * sizeof(float));
4 ...
5 matriz[i][j] = 2.5;

En este caso matriz es un arreglo de punteros a flotantes, cada uno de sus elementos será un
puntero a flotante. Ahora bien, puntero a flotante es el tipo de los arreglos dinámicos, dado que
puedo acceder a un arreglo a través de un puntero a su primer elemento. Luego cada uno de
los elementos de la matriz, un matriz[i] será un puntero a flotante y lo inicializaremos con un
vector dinámico.

En este caso notar que los dobles corchetes efectivamente significan lo esperado *(*(matriz
↪→ + i)+ j), acá no hay magia de la que C hace para resolver las matrices estáticas. Dos
asteriscos significan desreferenciar punteros dos veces.

El enfoque de arreglos dinámicos de arreglos dinámicos consume un poco más de memoria,
porque ahora se necesita un arreglo de filas punteros, pero es mucho más flexible al mantener
la memoria segmentada en bloques de no más de cols elementos consecutivos.
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Capı́tulo 12

Contratos

12.1. Documentación

Hasta el momento en la sección 2.8 introdujimos el concepto de comentarios y su sintaxis
y los hemos utilizado en muchos de los ejemplos que desarrollamos. Ahora bien nunca
formalizamos qué es un comentario y qué es la documentación.

Los comentarios son lo que hemos estado utilizando hasta el momento: Explicaciones al
margen del código que ayudan al que está leyendo el código fuente a entender cómo se está
haciendo algo o por qué se decidió hacerlo de esa manera. El destinatario de esos comentarios
es un programador1 que está queriendo mantener el código desarrollado. Cabe destacar, quien
lee código fuente sabe programar, por lo tanto los comentarios no deben explicar por ejemplo
que int i = 0; declara una variable de tipo entero que se llama i y le asigna el literal 0. Tal
vez (y sólo tal vez) tenga sentido explicar qué va a representar i en el código. Los comentarios
ayudan a entender cosas que no son obvias o consideraciones que no son evidentes.

Si bien los comentarios constituyen parte de la documentación del código vamos a jerar-
quizar el concepto de documentación de otra manera: Explicaciones de qué hace el código,
generalmente funciones o módulos. El destinatario de la documentación es aquel que quiera
utilizar, por ejemplo, nuestra función. Al que quiera utilizar una función le interesa saber
de qué forma se utiliza, qué representan los parámetros, qué devuelve, etc. y probablemente
tenga poco interés en saber cómo se implementó. Un ejemplo de documentación es la que
está asociada a todas las funciones de biblioteca que presentamos hasta el momento. Quien
lee documentación quiere, por ejemplo, saber cómo invocar a la función printf(), o cómo
imprimir un número de punto flotante con 5 decimales, pero no tiene el menor interés en saber
cómo es que printf() hace su magia. La documentación no explica el código fuente, es más,
muchas veces ni siquiera tenemos acceso a él, la documentación explica cómo interactuar con
las interfases.

Por más que muchas veces sea descuidada en un proyecto, la documentación es parte
importante del mismo. Un buen código puede ser muy expresivo, pero nunca explica por sı́
solo las decisiones de diseño, los casos particulares analizados, los algoritmos utilizados, etc.

12.2. Autodocumentación

Si bien documentar es importante, la documentación empieza por el código en sı́. Imagine-
mos que tenemos esta función:

1Notar que no decimos “otro programador”, tranquilamente podemos estar dejando un comentario para nosotros
mismos en el futuro.
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1 void f(int *a, int *b, int c);

La pregunta es, ¿qué hace la función? Si la función tiene una documentación podemos leerla, y
tal vez después de eso podamos saber para qué servı́a.

En realidad esta función ya la implementamos en la sección 8.7.1. La firma de la función fue

1 void copiar_vint(int destino[], const int origen[], size_t n);

¿Mejora en algo haber elegido un nombre claro para la función, para los parámetros, haber
dejado en claro que los primeros parámetros en realidad son vectores, que el segundo de ellos
es constante, que el tercer parámetro no es cualquier entero si no un tamaño de memoria? La
idea de la autodocumentación es que si somos claros en la intención de nuestras funciones
entonces no tenemos una necesidad de leer la documentación para entender qué hace una
función.

¿Esto significa que podemos prescindir de la documentación? No, todavı́a podemos querer
explicar detalles al respecto de la misma. Lo que esto significa es que si estamos leyendo un
fragmento de código fuente donde se llama a una función copiar_vint probablemente no haga
falta ir a la documentación para saber que esa función copia arreglos de enteros. Del mismo
modo que si quisiéramos usar la función no tendrı́amos que preguntarnos cuál de los dos
parámetros es el destino y perder el tiempo leyendo texto.

Y, dicho sea de paso, la diferencia más importante entre una función y la documentación es
que la función se compila y se ejecuta. Es decir, la función copiar_vint es exactamente lo que
está programado. La documentación puede contener errores o incluso estar desactualizada si el
proyecto se trató de forma negligente. Escribir código más claro implica poder documentar de
forma más compacta y no tener que mantener tanta documentación.2

La autodocumentación tiene limitaciones, pero es el comienzo para tener un código legible.

12.3. Contratos

La programación por contratos es una formalización del concepto de documentación que
intenta separar responsabilidades al respecto de de qué son responsables no sólo el que
implementó la función si no el que va a invocarla. La idea de la práctica de la programación
por contratos es dejar estipuladas por escrito las reglas de uso y el comportamiento.

El contrato no es otra cosa que documentación, pero programar por contratos es dejar en
claro en esa documentación determinadas responsabilidades:

Precondiciones: Las precondiciones de un contrato son condiciones que deben cumplirse antes
de ejecutar la función, es decir, son responsabilidad del que la invoca. Estas pueden ser
referidas a los valores recibidos, a condiciones sobre esos valores, etc. Por ejemplo, para la
función copiar_vint dada en la sección previa son precondiciones que tanto el vector
origen como destino existan y tengan al menos n elementos cada uno.

¿Qué implica establecer una precondición?, que no es responsabilidad de la función
validar o considerar qué pasarı́a si los datos de origen no son correctos. Y si bien en otros
lenguajes esto es un tema de comodidad y de focalizar las validaciones en donde realmente
sean necesarias, en el lenguaje C muchas veces ni aunque pudiéramos podrı́amos realizar
esa validación. El ejemplo de la función que copia enteros es más que válido, ¿cómo
podrı́a saber dentro de la función que los tamaños son adecuados si la función sólo recibió
punteros?

2Por cierto, de forma irónica en programación se suele decir “la documentación está en el fuente”, para justificar que
un código sin nada de documentación todavı́a puede entenderse simplemente leyéndolo.

91



12.4. ASSERT() CAPÍTULO 12. CONTRATOS

Postcondiciones: Las postcondiciones son condiciones que deben cumplirse luego de ejecutar
la función, es decir, son responsabilidades del que implementa la función. Ahora bien hay
un pero importante: Sólo se podrán garantizar las postcondiciones si las precondiciones se
cumplieron. Es decir, el que implementa la función se compromete a hacer algo siempre y
cuando sea llamado de manera correcta.

Por ejemplo, en el ejemplo ya dado, la función se compromete a que los n elementos del
vector origen sean copiados en el vector destino... ahora bien, sólo si los vectores existen
y son del tamaño adecuado.

Si bien las precondiciones y postcondiciones se pueden escribir de forma explı́cita en la
documentación (es decir “Precondiciones: ...”) también pueden ser integradas al texto de las
mismas de forma implı́cita. Lo importante de la documentación es que quede en claro qué se
espera recibir en cada parámetro y qué se devolverá o modificará luego de haber sido invocado
correctamente.

12.4. assert()

Tanto las precondiciones como las postcondiciones entran dentro de lo que se denominan
“aseveraciones” (o “assertions” en inglés). Las aseveraciones son expresiones que tienen que ser
válidas siempre.

En el lenguaje C se provee un encabezado, <assert.h>, que contiene una macro assert()
la cual recibe una expresión booleana. La intención de assert() es aseverar que esa expresión
sea cierta. Por ejemplo:

test.c

1 # include <assert.h>
2

3 /*
4 Recibe dos enteros numerador y denominador y calcula la divisi ón.
5 Precondiciones: El denominador debe ser distinto de cero.
6 Postcondiciones: Devuelve el cociente entre numerador y

↪→ denominador.
7 */
8 int dividir(int numerador , int denominador) {
9 assert(denominador != 0);

10 return numerador / denominador;
11 }

Si la expresión evaluara a true assert() no hará nada. Ahora bien, si llegara a evaluar a false,
que en este caso está asociado con haber violado una precondición, entonces el programa se
abortará indicando dónde se violó la aseveración. Por ejemplo:

$ ./test
test: test.c:19: dividir: Assertion ‘denominador != 0’ failed.
$

La macro assert() es una herramienta para realizar pruebas cuando se desarrolla código,
porque justamente permite testear cuando algo no está evaluando a lo que se espera.

Ahora bien, un programa en producción que se aborta cada vez que no se verifica una
aseveración puede ser peligroso dependiendo de la aplicación. Por ejemplo, podrı́amos aseverar
que una división no puede ser por cero o que no puede llamarse a una raı́z con un valor
negativo, pero si mi aplicación fuera un juego 3D que realiza millones de evaluaciones de
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distancias por segundo el resultado de una división por cero tal vez sea un pixel mal visto. Si
hubiera una cuenta inválida, ¿prefiero que se cierre el juego o que haya un error de visualización
indetectable? Entendamos que en la etapa de desarrollo querrı́a erradicar cualquier fragmento
que opere de forma anómala, pero cuando el código está siendo utilizado por el usuario esto ya
no es positivo.

La particularidad que tienen las macros de assert() es que pueden ser eliminadas del códi-
go. Invocando al compilador con el parámetro -DNDEBUG se inhabilitan todas las aseveraciones.
Para el ejemplo anterior:

$ gcc test.c -o test -DNDEBUG
$ ./test
Excepción de coma flotante
$

(Nadie dijo que deshabilitar los asserts iba a hacer que el código funcionara.)

12.5. Invariantes de ciclo

En programación las “invariantes” son condiciones que no se modifican a lo largo de la
ejecución. Una invariante de ciclo es una condición que siempre se verificará al comienzo de
cada ciclo de una iteración.

Ejemplo, si tenemos el código:

1 int maximo(const int v[], size_t n) {
2 int max = v[0];
3 for(size_t i = 1; i < n; i++)
4 if(v[i] > max)
5 max = v[i];
6 return max;
7 }

podemos definir como invariante que max siempre va a tener el máximo del arreglo en el rango
[0 . . i).

¿Para qué nos sirven las invariantes de ciclo? En principio son una definición formal que
sirve para demostrar algoritmos, pero en la práctica nos pueden ayudar a ordenar cómo
encaramos nuestros algoritmos. Por ejemplo, si estuviéramos desarrollando el código, ¿cómo
fue que tomamos la decisión de en la lı́nea 2 inicializar max = v[0]? Notar que esa inicialización
es inmediata mirando nuestra invariante: Si max debe contener siempre el máximo del arreglo
hasta i entonces en la primera iteración, tiene que contener v[0].

12.6. Alan y Bárbara

Cuando se presentaron las precondiciones y postcondiciones se habló del “que implementa”
y del “que invoca” una función. A partir de ahora nos vamos a referir mucho a esos dos roles y
es preferible ponerles un nombre. Los nombres podrı́an ser el usuario A y el usuario B, pero
preferimos utilizar los nombres Alan y Bárbara en honor a los programadores Alan Turing y
Bárbara Liskov.

Entonces, cuando hablemos de implementaciones vamos a tener siempre a nuestros dos
personajes:

Alan: El programador que implementa una función, o módulo o bloque.

Bárbara: El programador que utiliza esa función, o módulo o bloque.
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Cabe destacar que estos personajes no son personas sino que son roles, es decir, cuando
nos refiramos a que Alan hace determinada cosa y Bárbara hace determinada otra, no estamos
diciendo que tenga que haber dos programadores involucrados. Es perfectamente esperable
que un programador cuando desarrolle una función cumpla el rol de Alan y que cuando utilice
esa misma función cumpla el rol de Bárbara, no hace falta que haya terceros involucrados.

Del mismo modo los roles de Alan y Bárbara son relativos. Si Alan implementa una función,
y esa función, por ejemplo, utiliza la función sqrt() desde el punto de vista de sqrt() el rol
que llamábamos Alan ahora será Bárbara. Siempre vamos a ser el Alan o la Bárbara de alguien
más.
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Capı́tulo 13

Tipo de Dato Abstracto

Tal vez lo hayas notado pero en el último capı́tulo no introdujimos nada nuevo del lenguaje
C, esto es porque ya prácticamente cubrimos todo lo que tiene el lenguaje. Sin embargo apenas
estamos promediando el curso. A partir de ahora lo que vamos a hacer es profundizar por un
lado en algoritmos y por el otro en construir programas complejos.

Cuando hablamos de programas complejos no hablamos de códigos de 1000 lı́neas. Un
programa complejo puede tener cientos de veces esa cantidad. Por ejemplo en el año 2020
Mozilla Firefox tenı́a 21 millones de lı́neas, en el 2021 Linux tenı́a 30 millones de lı́neas, mientras
que Chromium tenı́a cerca de 35 millones de lı́neas de código. La pregunta es cómo podemos
hacer para mantener organizado código con esa extensión.

13.1. Tipo de Dato Abstracto

Hasta el momento cada vez que pusimos cosas en la memoria lo hicimos conociendo la
organización de esa memoria. Por ejemplo, en la sección 11.8 vimos dos formas diferentes de
poner en memoria una matriz, del mismo modo que en la sección 9.1 vimos diversos ejemplos
de empaquetamiento de datos en estructuras. Estos tipos son lo que se llaman tipos concretos.
Para utilizar el tipo necesito conocer cómo es su estructura.

Ahora bien este enfoque de conocer cómo están estructuradas las cosas por dentro no
permiten escalar en complejidad. Ası́ como cuando utilizamos una función no queremos saber
cómo es que hace lo que hace (por ejemplo, ¿cómo hace printf() para mostrar algo por
la pantalla?) queremos extender ese comportamiento también a las estructuras de datos. Si
podemos encapsular los datos de tal manera que no tengamos que preocuparnos por cómo
están implementados y sólamente con utilizarlos para construir nuestros programas, podemos
compartimentar los distintos bloques de un proyecto de tal manera que sea viable construirlo
combinando estos bloques para construir bloques más abstractos y de más alto nivel.

Si podemos estructurar un tipo detrás de una interfaz basada en llamadas a funciones,
entonces podemos prescindir de conocer cómo está representado internamente ese tipo y de
cómo manipularlo. Cuando encapsulamos un tipo nos interesa qué y no cómo lo hace. Este
encapsulamiento es lo que se conoce como Tipo de Dato Abstracto (TDA).

En la concepción del TDA queremos que Alan pueda implementar completo el tipo cono-
ciendo todos sus detalles y que Bárbara pueda utilizarlo de forma completamente opaca sin
preocuparse por la estructura o por la complejidad del trabajo de Alan. En nuestro modelo no
sólo a Bárbara no le importa saber cómo lo hizo Alan, vamos a llevarlo más allá y vamos a
impedir que Bárbara sepa cómo está hecho. Por eso se dice que el tipo es abstracto, desde la
perspectiva de Bárbara hace cosas pero no expone cómo las hace.
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13.2. Interfaz

Un TDA va a estar formado por dos cosas, uno es el tipo en sı́, que puede ser lo que más
cómodo le quede a Alan, una estructura, un arreglo, un entero, etc. sobre el cual Bárbara va a
ser totalmente ignorante al respecto de cómo se guarda la información dentro de él. La otra
cosa es una necesidad, como Bárbara no tiene acceso al tipo, Alan va a tener que proveer todas
las funciones que haga falta según las cosas que se puedan hacer con el tipo.

Entonces un TDA es un tipo y un conjunto de funciones, que llamaremos primitivas.
Imaginemos que tenemos un tipo complejo_t que representa a los números complejos C.

Las primitivas que me provea el tipo tendrán que ser consecuentes con lo que espero hacer con
complejos, por ejemplo sumarlos, restarlos, conjugarlos, etc. Digamos que una interfaz del tipo
podrı́a ser:

1 complejo_t *complejo_sumar(const complejo_t *a, const complejo_t *
↪→ b);

2 complejo_t *complejo_restar(const complejo_t *a, const complejo_t
↪→ *b);

3 complejo_t *complejo_multiplicar(const complejo_t *a, const
↪→ complejo_t *b);

4 complejo_t *complejo_dividir(const complejo_t *a, const complejo_t
↪→ *b);

5

6 complejo_t *complejo_conjugar(const complejo_t *a);
7 complejo_t *complejo_inverso(const complejo_t *a);

Como ya dijimos, estas funciones se llaman “primitivas”.
Ahora bien, si sólo tuviéramos estas primitivas nuestro tipo serı́a inútil. Si Bárbara no sabe

cómo está representado el tipo internamente, ¿para qué le sirve hacer operaciones si no puede
saber el resultado? Es decir, tengo dos complejos, los sumo, eso me genera un nuevo complejo.
¿Cuánto vale ese complejo? Incluso, yendo más allá, ¿de dónde saco los dos complejos que
quiero sumar?

El formato del TDA obliga a que, por fuera de las primitivas que necesito para operar mi
tipo, haya primitivas que sirven únicamente para gestionar el tipo.

13.2.1. Constructores y destructores

Para empezar a usar el TDA necesito primero alguna primitiva que me devuelva una
instancia de dicho TDA a partir de datos que no pertenezcan al TDA. En nuestro ejemplo de
complejos necesitamos poder generar un complejo desde una parte real e imaginaria, o desde
un módulo y un argumento o sencillamente tener una primitiva que me devuelva el complejo 0,
o el complejo 1 o el complejo i:

1 complejo_t *complejo_crear_ri(float real , float imaginaria);
2 complejo_t *complejo_crear_ma(float modulo , float argumento);
3 complejo_t *complejo_cero ();

Las primitivas que crean TDAs se llaman “constructores”.
Del mismo modo que el TDA se crea el TDA tiene que poder destruirse y al desconocer

Bárbara qué contiene dentro, tiene que delegar en Alan esta operación:

1 void complejo_destruir(complejo_t *c);

La primitiva que destruye un TDA se llama “destructor”.
Notar que todas las primitivas del tipo tienen de prefijo el nombre del tipo complejo_. Esta

es una manera de asociar las primitivas al tipo en cuestión.
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13.2.2. Getters y setters

Con los constructores y destructores resolvı́ la primera parte de mi problema, que era
generar complejos para empezar a operar. Pero de qué me sirve sumar el complejo devuelto
por complejo_crear(1, 2) con complejo_crear(0, 1) si el resultado es otro complejo que es
opaco para mı́.

El complejo tiene que tener una forma de extraer su contenido a tipos de datos externos al
TDA, por ejemplo:

1 float complejo_real(const complejo_t *c);
2 float complejo_imaginaria(const complejo_t *c);
3 float complejo_modulo(const complejo_t *c);
4 float complejo_argumento(const complejo_t *c);

Las primitivas que me dejan obtener datos internos del TDA se llaman “getters”.
Del mismo modo, puedo tener primitivas que me dejen escribir un dato interno del TDA,

como por ejemplo, darle un valor determinado a la parte real o a la imaginaria. Estas primitivas
se denominan “setters”.

El tipo, los constructores, destructores, getters, setters y primitivas en general, constituyen la
interfaz del tipo. Esto más la documentación1 constituirá el contrato del TDA que implementa
Alan y consume Bárbara.

13.3. Bárbara

Con lo presentado hasta el momento, Bárbara ya tiene todo lo necesario como para imple-
mentar los cálculos que necesite.

Cabe hacer la aclaración de que la interfaz elegida tal vez no sea la más práctica para
implementar un TDA pero sı́ la más similar a cómo se implementan tipos más... complejos.
Bárbara podrı́a hacer algo como:

1 complejo_t *a = complejo_crear_ri (1, 2);
2 complejo_t *b = complejo_crear_ri (0, 1);
3

4 complejo_t *r = complejo_sumar(a, b);
5

6 printf("Real:␣ %f,␣Imaginaria:␣ %f\n", complejo_real(r),
↪→ complejo_imaginaria(r));

7

8 complejo_destruir(a);
9 complejo_destruir(b);

10 complejo_destruir(c);

(Sı́, tenemos una Bárbara que no se preocupa por si las cosas pueden fallar.)
Notar que implementamos la parte de Bárbara basados pura y exclusivamente en el contrato.

No necesitamos nada más. El nivel de abstracción es tal que todavı́a ni siquiera discutimos
cómo es que Alan va a implementar lo que tiene que implementar. No hace falta, si conocemos
la interfaz del tipo podemos usarlo incluso aunque Alan ni haya empezado a diseñarlo.

1En este caso la documentación es volcar lo que explicamos cuando fundamentamos cada una de estas funciones.
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13.4. Alan

Si bien para Bárbara el TDA es un tipo abstracto, para Alan será un tipo concreto. La
potencia del paradigma es que Alan puede definir el tipo concreto que quiera, cambiarlo más
adelante, o incluso puede venir otro Alan a proveer una implementación diferente del mismo
tipo.

Siempre y cuando la representación que Alan elija sirva para poder resolver los casos de
uso de las primitivas, Alan puede elegir la representación interna que quiera. Incluso en un
ejemplo tan sencillo como este hay múltiples formas de crear el tipo. Por ejemplo:

1 // El tipo es un arreglo de dos elementos (¿qu é es cada uno?):
2 typedef float complejo_t [2];
3

4 // El tipo es una estructura:
5 typedef struct {
6 float real , imaginaria;
7 } complejo_t;
8

9 // El tipo es otra estructura:
10 typedef struct {
11 float modulo , argumento;
12 } complejo_t;
13

14 // Empaquetamos 2 floats de 32 bits en un entero de 64 bits:
15 typedef uint64_t complejo_t;

Cada representación tendrá ventajas y desventajas, algunas primitivas serán más fáciles de
implementar, otras más difı́ciles.

Supongamos que implementamos la estructura con parte real e imaginaria, veamos algunas
primitivas:

1 // Un constructor:
2 complejo_t *complejo_crear_ri(float real , float imaginaria) {
3 complejo_t *c = malloc(sizeof(complejo_t));
4 if(c == NULL) return NULL;
5

6 c->real = real;
7 c->imaginaria = imaginaria;
8

9 return c;
10 }
11

12 // El destructor:
13 void complejo_destruir(complejo_t *c) {
14 free(c);
15 }
16

17 // Un getter:
18 float complejo_real(const complejo_t *c) {
19 return c->real;
20 }
21

22 // Una primitiva gen érica:
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23 complejo_t *complejo_sumar(const complejo_t *a, const complejo_t *
↪→ b) {

24 return complejo_crear_ri(a->real + b->real , a->imaginaria + b
↪→ ->imaginaria);

25 }

Más allá de que se haya elegido un ejemplo sencillo, suele ser común que las primitivas de
un TDA sean funciones sencillas y de pocas lı́neas. Como el tipo va a ser utilizado por Bárbara,
entonces la lógica de la interfaz tiende a implementar operaciones atómicas y muy concretas,
además de que el diseño que se hace tiende a ordenar cómo se resuelven las cosas. Por lejos de
complicar las cosas los TDAs las simplifican y estructuran, tanto para Alan como para Bárbara.

Como un apunte al margen se vuelve al comentario de que tal vez esta no sea la mejor
interfaz para este TDA. ¿Por qué?, porque un complejo es un tipo muy sencillo que apenas
tiene dos valores y hacer que cada operación devuelva una nueva instancia creada con memoria
dinámica genera mucha sobrecarga en nuestro código. Tal vez un tipo tan sencillo como el
complejo podrı́a resolverse con un intermedio entre los tipos concretos y los abstractos donde
las funciones tomen y devuelvan estructuras sin utilizar punteros y Bárbara conozca cómo es la
implementación interna2 En ese caso no tendrı́amos destructores, ni tendrı́amos que validar
memoria, aunque probablemente serı́a cómodo tener constructores que armen el tipo.

13.5. Invariantes de representación

En la sección 12.5 se definieron las invariantes. En los TDAs existen las invariantes de repre-
sentación, que van a ser muy importantes en nuestro diseño. Al igual que otras invariantes, las
invariantes de representación son condiciones que van a ser siempre ciertas en la representación
interna de los tipos.

La invariante de representación de un determinado TDA será algo interno de Alan y su
implementación. Alan se encargará de definir qué cosas quiere definir como invariante.

¿Para qué sirven? La idea es esta, si las invariantes tienen que cumplirse siempre y Alan
es el único que puede manipular los datos del tipo, entonces la invariante de representación
será a su vez precondición y postcondición de todas las primitivas. Es decir, como Alan va a
garantizar que ninguna primitiva va a romper la invariante, entonces puede tener asegurado
que el tipo va a venir siempre con la invariante correcta.

Volvamos al ejemplo de los complejos, pero en este caso Alan definió su representación
interna con struct { float modulo, argumento; }; y tiene que implementar una primitiva
para comparar dos complejos. Por ejemplo:

1 bool complejo_son_iguales(const complejo_t *a, const complejo_t *b
↪→ ) {

2 return a->modulo == b->modulo && a->argumento == b->argumento;
3 }

¿Está bien implementada esta primitiva? Si tengo el complejo 0 6 0, ¿es el mismo o no que el
complejo 0 6 π? ¿Y el complejo 1 6 0 es o no el mismo que 1 6 2π? ¿Y el complejo 1 6 π es o no el
mismo que −1 6 0?

La primitiva anterior no funciona. Y hacer funcionar a esa primitiva es complicado cuando
comparar dos complejos deberı́a ser una tarea sencilla.

¿Cambiarı́a algo si garantizáramos invariantes sobre la representación? Propongamos esto:

1 typedef struct {
2 /* Representa a un número complejo en su forma polar.

2Vamos a explicar a qué nos referimos un poco más adelante.
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3 Invariante de representaci ón:
4 - modulo >= 0
5 - 0 <= argumento < 2pi
6 - Si modulo = 0 => argumento = 0 */
7 float modulo , argumento;
8 } complejo_t;

Si la invariante fuera esa, entonces la implementación de complejo_son_iguales() ya dada
serı́a correcta y principalmente sencilla. ¿Todo el código serı́a sencillo? No particularmente,
por ejemplo, el constructor complejo_crear_ma() tendrá que validar y ajustar los parámetros
recibidos por Bárbara quién no conoce ni debe conocer la invariante de Alan. Ahora bien,
esto es algo que se hace únicamente al modificar o recalcular módulos y argumentos, luego
simplifica el resto de las primitivas dado que podremos contar con que los complejos tendrán
una representación única.

Salgamos del ejemplo de los complejos y pensemos por ejemplo en un vector dinámico que
puede almacenar elementos enteros de a uno por vez:

1 typedef struct {
2 /* Vector din ámico de enteros.
3 Invariante de representaci ón:
4 - v es un vector de n elementos
5 - v == NULL si y sólo si n == 0 */
6 int *v;
7 size_t n;
8 } vector_t;

Y lo que se definió como invariante puede parecer poco pero es tremendamente ordenador
sobre cómo implementar las primitivas, por ejemplo:

1 vector_t *vector_crear () {
2 vector_t *v = malloc(sizeof(vector_t));
3 if(v == NULL) return NULL;
4

5 v->v = NULL;
6 v->n = 0;
7

8 return v;
9 }

10

11 void vector_destruir(vector_t *v) {
12 free(v->v);
13 free(v);
14 }
15

16 bool vector_agregar_elemento(vector_t *v, int elemento) {
17 int *aux = realloc(v->v, (v->n + 1) * sizeof(int));
18 if(aux == NULL) return false;
19

20 v->v = aux;
21 v->v[v->n++] = elemento;
22

23 return true;
24 }
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¿Podés identificar dónde estamos siendo obligados y dónde estamos usando a nuestro favor la
invariante de representación?

Tanto en la inicialización del constructor, como en incrementar el valor de v->n después de
agregar un elemento estamos haciendo cosas para cumplir la invariante.

Ahora bien, en el destructor estamos liberando v->v sin nunca chequear que el vector esté
vacı́o, del mismo modo, en la primitiva de agregar elemento estamos redimensionando el
vector sin revisar que esté vacı́o. Ambas operaciones pueden hacerse con seguridad porque
está garantizado el comportamiento de free() y realloc() cuando el parámetro es NULL (ver
sección 11.7).

Dicho sea de paso, notar que si falla el agregado de un elemento sólo falla esa operación
y nada más. El contenido previo del TDA (y su invariante) se preserva. Ni siquiera una falla
grave de memoria deberı́a romper la invariante.

Volviendo a las cosas que pudimos simplificar porque las habı́amos definido en la invariante
debemos remarcar que sólo pudimos simplificarlas por haberlas definido como invariante. Si no
hubiéramos definido ese invariante (o alguno diferente, no es el único posible) no podrı́amos
haber asumido nada al respecto de los datos, porque nadie garantizarı́a una consistencia en
todas las primitivas del tipo. Dicho de otra forma, no podemos asumir nada que no hayamos
documentado como invariante, si lo hiciéramos estarı́amos modelando mal nuestro tipo.

13.6. Modularización

Volvamos al ejemplo del TDA de números complejos. Tenemos a Alan y Bárbara codificando
para un mismo proyecto, ¿pueden desacoplar sus códigos?

En el próximo capı́tulo trataremos en detalle el tema de modularización, pero para cerrar el
ejemplo explicaremos lo básico acá.

La idea es que Alan y Bárbara puedan trabajar por separado. Es más, nosotros hablamos de
los roles de Alan y de Bárbara como roles que se dan en simultaneo, pero esto no tiene por qué
ser ası́. La mayor parte de las veces Alan desarrolló un TDA sin siquiera saber las necesidades
de Bárbara y tiempo después Bárbara considera que el TDA de Alan es adecuado para resolver
su problema y lo utiliza en su proyecto. Ası́ suele ser la dinámica con las bibliotecas que
utilizamos.

Repasemos un poco. Habı́amos dicho que el contrato era el tipo, la interfaz y la docu-
mentación. Notar que eso en lenguaje C corresponde a declaraciones y comentarios, no a
definiciones e implementaciones. Si recordamos de cuando vimos el proceso de compilación los
archivos de encabezados .h contenı́an justamente definiciones de tipos, etiquetas y prototipos
de funciones.

Entonces, en nuestro tipo el contrato va a terminar siendo un archivo .h provisto por Alan.
Ahora bien, ¿cómo incluı́mos el tipo en el encabezado? Si Alan definiera la estructura en

este archivo entonces Bárbara conocerı́a cómo es la representación interna de la estructura.
Bueno, el lenguaje C tiene mecanismos para resolver esto.

En el lenguaje C es viable declarar una estructura: struct complejo; o typedef struct
↪→ complejo compejo_t; sin definirla. Notar que si declaramos una estructura el compilador
no puede conocer su sizeof() y por lo tanto no puede reservar memoria para variables. Es
más, si tenemos solamente la declaración tampoco conoce los miembros de la estructura por
lo que no puede utilizarse el operador punto (ni flecha). Si bien desde el punto de vista de
Bárbara esto es exactamente lo que necesitamos, cabe hacerse la pregunta de para qué sirve
declarar una estructura si no puedo ni declarar variables ni acceder a su contenido. Bueno, la
respuesta es que con la declaración puedo declarar punteros. Recordar que un puntero no es
otra cosa que una dirección de memoria, para declarar una variable de tipo puntero sólo hay
que saber el tamaño de las direcciones de memoria, no importa el tamaño del tipo apuntado.

Entonces, podremos definir un archivo complejo.h con el siguiente contenido:

101
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complejo.h

1 // ARREGLAME: Falta documentar todo esto.
2 typedef struct complejo complejo_t;
3

4 complejo_t *complejo_crear_ri(float real , float imaginaria);
5 complejo_t *complejo_crear_ma(float modulo , float argumento);
6 complejo_t *complejo_cero ();
7

8 void complejo_destruir(complejo_t *c);
9

10 complejo_t *complejo_conjugar(const complejo_t *a);
11 complejo_t *complejo_inverso(const complejo_t *a);
12 float complejo_real(const complejo_t *c);
13 float complejo_imaginaria(const complejo_t *c);
14 float complejo_modulo(const complejo_t *c);
15 float complejo_argumento(const complejo_t *c);
16

17 complejo_t *complejo_sumar(const complejo_t *a, const complejo_t *
↪→ b);

18 complejo_t *complejo_restar(const complejo_t *a, const complejo_t
↪→ *b);

19 complejo_t *complejo_multiplicar(const complejo_t *a, const
↪→ complejo_t *b);

20 complejo_t *complejo_dividir(const complejo_t *a, const complejo_t
↪→ *b);

Luego Bárbara escribirá su “main.c” haciendo un #include de este archivo, y Alan imple-
mentará su complejo.c el cual definirá la struct complejo y las funciones.

Como ya dijimos, terminaremos de explicar la modularización en el próximo capı́tulo
dedicado especı́ficamente a eso.
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Capı́tulo 14

Modularización

14.1. Proceso de compilación

Ya le dedicamos completo el capı́tulo 4 a explicar el proceso de compilación del lenguaje C.
Refresquemos particularmente que es un proceso en tres etapas:

1. Primero viene la etapa de preproceso. Durante esta etapa actúa el preprocesador, que
realiza reemplazos, inclusiones, etc. En este paso nuestro código se nutre de archivos de
encabezados .h. Los archivos de encabezados contienen declaraciones de tipos, funciones,
etiquetas, macros, etc.

2. Luego viene la etapa de compilación. Durante esa etapa actúa el compilador, que traduce
nuestro código fuente en código objeto (que es equivalente al código máquina). Este
proceso no toma nada del exterior, es nuestro código complementado con las declaraciones
que trajo el preprocesador, pero lo único que es traducible a código objeto es nuestro
código fuente.

3. Finalmente viene la etapa de enlace. Durante esta etapa actúa el enlazador, que junta
nuestro código objeto con el código objeto de las bibliotecas que utilizamos y resuelve
las referencias cruzadas que existan. Además el enlazador es el que verifica que haya un
único main() y lo establece como punto de entrada.

Por diseño C está pensado para compilar programas modulares. Si bien hasta el momento
utilizamos el enlazador para juntar el código objeto de nuestro programa con el código objeto
de la biblioteca de C, el enlazador puede combinar múltiples códigos objeto para formar un
único ejecutable. Entonces podemos partir nuestro proyecto en múltiples archivos .c, compilar
cada uno individualmente y luego juntar sus códigos objetos para formar un ejecutable.

En la invocación que venimos haciendo del GCC estamos realizando una compilación
monolı́tica, es decir, los tres procesos se ejecutan en secuencia y generan un único ejecutable.
Ahora bien, el GCC se puede manipular para ejecutar cada uno de los pasos de forma individual.

En este caso nos interesa compilar, o sea, realizar la etapa de preprocesado y compilación,
para generar un código objeto y luego enlazar el código objeto. Si tuviéramos un fuente.c
podrı́amos hacer esto:

$ gcc fuente.c -c -Wall -std=c99 -pedantic
$ gcc fuente.o -o programa -lm
$

La primera lı́nea se encargó de la compilación y generación del código objeto fuente.o
mientras que la segunda enlazó el código objeto para generar el programa. Notar que estamos
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distinguiendo qué parámetros son de compilación y cuáles de enlace. No tendrı́a sentido
pasarle, por ejemplo, -lm a una etapa que no enlaza o -Wall a una etapa que no compila.

Ası́ como en la segunda lı́nea enlazamos a fuente.o con las bibliotecas libc.so1 y libm.so
las bibliotecas de C y matemáticas respectivamente, también podemos enlazar contra otros
códigos objeto. Es decir, podemos realizar múltiples compilaciones de archivos .c con -c y
luego enlazarlas todas juntas en un único ejecutable. El único requisito es que entre todos los
objetos se aporte uno y sólo un main().

14.2. Modularización

Como se adelantó en el capı́tulo anterior, la modularización consiste en separar proyectos
en múltiples archivos .c y comunicar esos archivos con archivos .h.

En el ejemplo del capı́tulo anterior desarrollamos un TDA para manejar números complejos
e hicimos una aplicación que los utilizaba. En la sección 13.6 anticipamos un borrador de cómo
serı́a la modularización.

Habiamos llegado a que tenı́amos tres archivos: main.c, donde Bárbara implementó sus
operaciones con complejos y complejo.c y complejo.h donde Alan diseñó y documentó su
TDA respectivamente.

Si Bárbara definiera su main.c como:

main.c

1 # include <stdio.h>
2

3 # include "complejo.h"
4

5 int main(void) {
6 complejo_t *a = complejo_crear_ri (1, 2);
7 complejo_t *b = complejo_crear_ri (0, 1);
8

9 complejo_t *r = complejo_sumar(a, b);
10

11 printf("Real:␣ %f,␣Imaginaria:␣ %f\n", complejo_real(r),
↪→ complejo_imaginaria(r));

12

13 complejo_destruir(a);
14 complejo_destruir(b);
15 complejo_destruir(c);
16

17 return 0;
18 }

Podrı́amos compilar este archivo como:

$ gcc -c main.c -Wall -std=c99 -pedantic
$

Obteniendo el objeto main.o.
Notar un detalle, la inclusión de complejo.h se hizó con comillas dobles ("...") y no

con paréntesis angulares (<...>) como hasta el momento. Cuando utilizamos los paréntesis el
compilador sabe que tiene que ir a buscar el archivo de encabezados a la ruta por omisión donde

1.so: “shared object”, otro tipo de objetos.
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están los de sus bibliotecas, en cambio cuando utilizamos comillas estamos diciéndole que
busque el encabezado como una ruta local relativa adonde está el código fuente que estamos
compilando.

De un modo similar Alan incluirá a complejo.h en su fuente complejo.c para compilarlo.
No mostramos el contenido completo del archivo complejo.c pero comenzará con:

complejo.c

1 # include "complejo.h"
2

3 # include <stdlib.h>
4 # include <math.h>
5

6 struct complejo {
7 float real , imaginaria;
8 };
9

10 // Y ac á vendr ı́a la implementaci ón de todas las primitivas

¿Para qué le sirve a Alan incluir su propio encabezado? Por un lado hay cosas que están
definidas en el encabezado y no en el .c, como por ejemplo, la redefinición typedef struct
↪→ complejo complejo_t;. Por el otro es una buena práctica porque forzamos a que las
primitivas que Alan implemente en su código fuente coincidan con los prototipos que están en
el archivo de encabezados.

Notar que por más que complejo.h sea “el” encabezado de Alan, Alan todavı́a tiene que
incluir los encabezados que necesite para su código, stdlib.h para las funciones de memoria
dinámica o math.h para hacer operaciones trigonométricas o de raı́ces. No serı́a correcto incluir
esas inclusiones en complejo.h dado que no forman parte del contrato y es irrelevante para
Bárbara saber qué utilizó internamente Alan para implementar el TDA.

En la próxima sección completaremos el archivo de encabezado.

14.3. Archivos de encabezados

Si bien ya en la sección 13.6 mostramos un esquema del archivo de encabezados profundiza-
remos un poco más acá.

Como ya se dijo dentro del archivo de encabezados habrán declaraciones de tipos, de
funciones, etiquetas, etc.

Ahora bien, un archivo de encabezado tiene que estar diseñado de tal manera de que si uno
lo incluyera en un archivo de fuentes el mismo no genere errores de compilación. Por ejemplo,
si el encabezado contuviera una función bool vector_asignar(const vector_t *v, size_t
↪→ i, int elemento);, ni bool ni size_t son cosas del lenguaje. Ya sabemos por experiencia
que si no incluyéramos las bibliotecas donde ellos se definen el código no compiları́a. Como no
podemos asumir que quien incluya el encabezado incluya alguna cosa adicional es el mismo
encabezado el que tiene que hacer los #include correspondientes.

Sabemos que bool está en stdbool.h, ahora bien, ¿dónde está size_t? Si vamos al caso,
venimos utilizando este tipo desde hace rato y nunca mencionamos de dónde sale. No lo
mencionamos porque si utilizamos stdio.h viene, pero también viene si utilizamos stdlib.h,
pero también si utilizamos string.h y otros encabezados más. ¿Entonces está definido en todos?
No, size_t está definida en un único encabezado, que es el mismo que define NULL, que se llama
stddef.h. Todos los encabezados que mencionamos antes hacen un #include <stddef.h>.

Ahora bien si yo, por ejemplo, incluyera tanto stdio.h como stdlib.h estarı́a incluyendo
dos veces a stddef.h y por lo tanto definiendo dos veces las cosas que están ahı́. ¿Eso no serı́a
un problema? Sı́, de hecho serı́a un problema.
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El preprocesador, además de para declarar etiquetas o incluir archivos sirve para realizar
compilaciones condicionales. Esto es, activar o desactivar fragmentos de código según el estado
de etiquetas2.

Entonces, si tuviéramos un encabezado miencabezado.h envolverı́amos el contenido del
mismo en la siguiente construcción:

miencabezado.h

1 # ifndef MIENCABEZADO_H
2 # define MIENCABEZADO_H
3

4 // Ac á estar ı́a todo el contenido del encabezado
5

6 #endif

La instrucción #ifndef significa “si no está definido”. Es decir, si no está definida la etiqueta
MIENCABEZADO_H que, por qué lo estarı́a, si sólo deberı́a haber un archivo con ese nombre,
entonces hacemos dos cosas: En primer lugar la definimos (si no aclaramos nada, por omisión
se define con el valor 1), para que esté para la próxima y en segundo lugar declaramos todas
las cosas que querı́amos declarar en el archivo de encabezado. El #endif es el indicador de que
terminó el #ifndef, a diferencia de C, donde marcamos el final de los bloques con llaves en el
preprocesador lo hacemos con esta instrucción.

En la primera inclusión del archivo se define todo lo que haga falta y además la etiqueta.
Si hubiera una segunda inclusión no se entrará al #ifndef dado que MIENCABEZADO_H ya se
encontraba definido de la vez anterior. Con esta salvaguarda se garantiza que las cosas se
declaren una única vez. Todos los archivos de encabezado deben contener esta construcción,
sin excepción.

Entonces, haciendo una puesta en común, el archivo complejo.h quedará:

complejo.h

1 # ifndef COMPLEJO_H
2 # define COMPLEJO_H
3

4 # include <stdbool.h>
5

6 typedef struct complejo complejo_t;
7

8 // Inclu ı́mos sólo algunas de las primitivas en este ejemplo:
9 complejo_t *complejo_crear_ri(float real , float imaginaria);

10 void complejo_destruir(complejo_t *c);
11 complejo_t *complejo_conjugar(const complejo_t *a);
12 complejo_t *complejo_sumar(const complejo_t *a, const complejo_t *

↪→ b);
13 bool complejo_son_iguales(const complejo_t *a, const complejo_t *b

↪→ );
14

15 #endif

Notar que la existencia de la función bool complejo_son_iguales(...) nos fuerza a incluir
stdbool.h.

2Es lo que vimos cuando hablamos de assert(), que podı́a desactivarse compilando con -DNDEBUG, que no es otra
cosa que decirle al compilador que defina una etiqueta NDEBUG de valor 1.
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Y repetimos: No importa qué necesidades de encabezados requiera Alan para compilar
complejo.c, en el encabezado del TDA sólo incluı́mos lo que es útil para el contrato y para
que si Bárbara incluye el archivo su código compile.

14.4. Make

Si bien con las herramientas que vimos podemos compilar cualquier proyecto sin importar
cuántos archivos posea primero compilando cada código fuente y luego enlazando todos juntos,
ese proceso es tedioso e inconsistente. Presentaremos la herramienta Make que sirve para
automatizar la compilación.

La herramienta Make utiliza un archivo de nombre Makefile3 para definir las reglas de la
compilación. Cada regla del archivo Makefile tiene el siguiente formato:

1 regla: dependencia1 dependencia2 ...
2 accion1
3 accion2
4 ...

Importante el caracter que precede a las acciones es una tabulación (’\t’), Make no funciona
si en vez de tabulación hay caracteres espacio, revisá cómo ingresar tabulaciones en tu editor
de textos.

Antes de realizar la acción para la generación de la regla se chequearán las dependencias.
Las dependencias a su vez pueden ser reglas o pueden ser archivos. Luego se ejecutarán la
acciones. Por ejemplo:

1 complejo.o: complejo.c complejo.h
2 gcc -c complejo.c -Wall -std=c99 -pedantic

Mi regla dice que si voy a construir complejo.o eso depende de los archivos complejo.h y
complejo.c y que hay que ejecutar esa llamada al GCC.

Make no sólo es capaz de realizar la compilación, también Make es capaz de decidir si debe
o no hacer la compilación. Si el archivo complejo.o no existiera obviamente debe compilarlo.
Ahora bien, si el archivo ya existiera, ¿debe compilarlo de nuevo? Bueno, Make toma esa
decisión en función de la fecha de modificación de la regla y de las dependencias. Si las fecha
de modificación de las dependencias fuera posterior a la fecha de modificación de la regla eso
indicarı́a que hubo cambios en mi código fuente y por lo tanto hay que recompilar. En cambio
si la fecha de generación del objeto fuera posterior a la de los fuentes, eso significa que ya
compilé la última versión y no necesito recompilar nada.

Esta optimización de qué compilar y qué no que hace Make hace que si estoy trabajando
sobre un proyecto muy grande el mismo va a ser compilado completo sólo la primera vez. A
partir de ahı́ sólo se recompilará lo que haga falta y luego se realizará el enlace final, donde el
enlace es un proceso mucho más liviando que la compilación.

Antes de mostrar un ejemplo completo de Makefile observemos que si vamos a hacer
muchas compilaciones vamos a tener que escribir muchas veces los parámetros del GCC. Ahora
bien, tal vez queramos cambiar esos parámetros a futuro, por ejempo, queremos debuggear
y agregar -g o queremos lanzar una versión en producción y agregar -DNDEBUG. En un caso
ası́ serı́a ineficiente tener que editar cada lı́nea de compilación. Por suerte podemos definir
etiquetas y utilizarlas después.

Dicho esto, el Makefile para compilar nuestro proyecto de complejos:

Makefile

3Sı́, con eme mayúscula.
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1 CFLAGS=-Wall -std=c99 -pedantic
2 LFLAGS=-lm
3

4 all: main
5

6 main: main.o complejo.o
7 gcc main.o complejo.o -o main $(LFLAGS)
8

9 main.o: main.c complejo.h
10 gcc $(CFLAGS) -c main.c
11

12 complejo.o: complejo.c complejo.h
13 gcc $(CFLAGS) -c complejo.c
14

15 clean:
16 rm *.o main

Expliquemos ahora el comando make. Podrı́amos ejecutar:

$ make
gcc -Wall -std=c99 -pedantic -c main.c
gcc -Wall -std=c99 -pedantic -c complejo.c
gcc main.o complejo.o -o main -lm
$

Make leyó la definición de dependencias del archivo Makefile y resolvió la primera regla
all. Para construir all tuvo que construir main y eso disparó las diversas invocaciones al GCC.

Si modificáramos main.c e invocáramos de nuevo:

$ make
gcc -Wall -std=c99 -pedantic -c main.c
gcc main.o complejo.o -o main -lm
$

verı́amos cómo no hubo necesidad de recompilar complejo.o porque las fechas indicaban que
no habı́a habido modificaciones en sus fuentes.

Notar que existe una regla clean que no es dependencia de ninguna, por lo tanto no va a
ser invocada nunca. Podemos pedirle a Make que ejecute una regla puntual:

$ make clean
rm *.o main
$

En este caso borrará todos los archivos de la compilación y dejará el proyecto como antes
de compilarlo. Esta regla suele incluirse tanto para limpiar el proyecto como para forzar el
recompilado. Por ejemplo si modificáramos los flags de compilación del GCC en el archivo
Makefile eso no modificarı́a ninguna de las dependencias pero querrı́amos volver a generar
todo el proyecto. En un caso ası́ habrı́a que limpiar el proyecto primero.

Lo que se presentó en este capı́tulo es una introducción mı́nima a Make. Este programa es
parte del ecosistema de aplicaciones de C y es un estándar. Cuando uno descarga bibliotecas o
programas desarrollados en C espera que haya un archivo Makefile o similar4. Es un estándar
descargar un proyecto y ejecutar make all para compilarlo.

4Existen alternativas superadoras a make para el caso de compilaciones complejas.
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14.5. Entidades públicas y privadas

No se dijo de forma explı́cita, pero por lo que se vio hasta el momento si alguien define una
función en un módulo a.c alguien puede utilizarla desde un módulo b.c tan sólo invocándola.
Es cierto, hablamos de tener un a.h que declare a dicha función, pero incluso ante la ausencia
de prototipo en el encabezado, la firma podrı́a definirse en el archivo b.c y ser utilizada.

Dicho de otra forma, todas las funciones que definimos en nuestros archivos de código
fuente están disponibles para ser utilizadas desde cualquier otro archivo de código fuente. Es
decir, por omisión la visibilidad de las funciones es pública a los demás módulos.

En muchos casos podemos tener funciones que no tenga sentido que sean invocadas desde
afuera. Por ejemplo si se trata de funciones auxiliares a un TDA, las mismas no formarı́an parte
del contrato e incluso la existencia de esas funciones podrı́a exponer cómo es la representación
interna.

Podemos hacer que las funciones sean privadas a un único módulo anteponiendo la palabra
static a la definición de la misma. Por ejemplo, si en el archivo a.c definiéramos:

1 static int a() {
2 return 5;
3 }

La función a() podrı́a ser invocada desde dentro de a.c pero serı́a invisible para el enlazador
en el código objeto.

Es importante marcar como static las funciones que no formen parte de la interfaz no
sólo por paranoia de que Bárbara las utilice si no porque una función no documentada puede
colisionar con otra función de otro módulo si se definieran dos funciones con el mismo nombre.
Si la función no es de utilidad hacia afuera debe quedar delimitada a su módulo.

Algo similar a las funciones pasa con las variables globales. Si definiéramos una variable
global en un módulo la misma estarı́a visible para los demás y colisionarı́a si hubiera una
variable global con el mismo nombre en otro módulo. Entonces podemos hacer:

1 static const float g = 9.81;

y la variable será privada del fuente donde se defina.
Ahora bien, ¿cómo hacemos si quisiéramos tener una variable global compartida entre

diferentes módulos? Es decir, querrı́amos que una única variable global sea declarada en un
deterimnado módulo pero usada desde otros. Si nos limitáramos a declarar la variable en dos
módulos distintos tendrı́amos una colisión entre dos variables diferentes.

En este caso esto se resuelve “avisándole” al compilador de la existencia de una variable
que está en otro módulo, donde el enlazador será el encargado de referenciar. Es algo similar a
cuando declaramos una función con un prototipo.

Supongamos que queremos que una variable de a.c se exponga globalmente. En el archivo
a.c simplemente definiremos la variable:

1 const float g = 9.81;

Notar que la variable es pública.
Luego en el archivo a.h le “avisaremos” al compilador que la variable existe:

1 extern const float g;

Con el modificador extern el compilador sabe que existe una variable llamada g constante de
tipo flotante, pero no reserva memoria para ella en los lugares donde esté definida. Ahora bien,
cuando compilemos a.c el compilador ahı́ tendrá la variable declarada y definida sin extern
por lo que sı́ reservará memoria y además expondrá el sı́mbolo en el a.o. Cuando el enlazador
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combine los objetos tendrá múltiples módulos que requieren de g y sólo uno que lo defina,
simplemente enlazará las referencias.

Por completitud mencionaremos otro significado contextual de static no relacionado con
los anteriores. Cuando utilizamos static para una variable dentro de una función esa variable
será una variable privada de dicha función pero en vez de vivir en la pila vivirá en el espacio
de las variables globales. Es decir, será una variable de una función que tendrá persistencia
entre distintas invocaciones a la función. Por ejemplo:

1 int contar () {
2 static int cuenta = 0;
3 return ++ cuenta;
4 }

Cada vez que llamemos a la función nos devolverá un número más que la vez anterior.
Las variables static tienen varios usos, desde poder devolver punteros a memoria que

persiste sin utilizar memoria dinámica (pero que se sobreescribe su contenido si llamo de nuevo
a la función) a tener funciones que recuerdan cosas entre llamadas. Si querés ver ejemplos
podés investigar sobre la función asctime() o sobre strtok(), para ver dos usos diferentes.

14.6. Macros de función

Si bien son una herramienta desrecomendada, por completitud vamos a hablar de las macros
de función.

Se llaman macros de función a las macros del preprocesador que realizan reemplazos con
parámetros. Por ejemplo:

1 # define DUPLICAR(x) x * 2

Cuando en el código escribamos por ejempo DUPLICAR(3.14) la macro se expandirá a 3.14 * 2,
que evaluará a 6.28.

Ahora bien es importante destacar que las macros no son funciones por lo tanto no hay una
evaluación de expresiones para inicializar parámetros. Una macro como la anterior está mal
escrita y nunca debe definirse ası́. ¿Qué pasarı́a si alguien escribiera DUPLICAR(1 + 1)? Eso se
expandirı́a a 1 + 1 * 2 lo cual evaluarı́a a 3. Incluso podrı́a pasar que en algún contexto de
inclusión hasta el operador de mutiplicación se asociara con algo más y el resultado no fuera el
correcto.

Al escribir macros de función tenemos que prevenir a toda costa que la precedencia cambie
el orden de evaluación. Una macro escrita de forma correcta podrı́a ser:

1 # define MAX(a, b) ((a) > (b) ? (a) : (b))

¿Se ve la cantidad de paréntesis? No puede haber menos que esos.
Supongamos la macro:

1 # define ES_MAYUSCULA(c) ((c) >= ’A’ && (c) <= ’Z’)

¿Qué pasarı́a si escribiéramos ES_MAYUSCULA(getchar())? Si expandiéramos la macro ob-
tendrı́amos ((getchar())>= ’A’&& (getchar())<= ’Z’)... ¡Son dos llamadas a getchar()!

Este último problema no puede ser resuelto utilizando macros, se resuelve implementando
funciones. Cuando invocamos una función la expresión que pasemos por parámetro se evalúa
una única vezy ese valor se le pasa a la función. Además de que la función se evalúa como un
todo, que hay conversiones claras de tipos, etc.

Es por esto que si bien las macros son una herramienta del lenguaje, deben ser utilizadas
con criterio y conscientemente de que no son funciones.
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Capı́tulo 15

Manejo de archivos

15.1. Introducción

En el mundo de la computación los archivos son las entidades en las que persistimos datos,
es decir, queremos almacenar algo para recuperarlo después, esos datos deberán ser archivados
de alguna forma.

Cuando hablamos de archivos hablamos de dos propiedades independientes entre sı́, por
un lado sus datos, es decir el contenido que queremos persistir y por el otro lado su metadata
que es cómo se llama ese archivo, qué permisos tiene, en qué ubicación se encuentra.

Los archivos forman parte de un sistema de archivos. En un sistema de archivos los mismos
se organizan en estructuras de archivos y directorios. Los directorios son entidades que dentro
pueden contener archivos y directorios, es decir, una estructura recursiva. Los mismos sirven
para organizar la información dado que podemos anidar nuestro archivo dentro de una
secuencia de directorios que forme una cadena lógica, por ejemplo Usuarios/Juan/TA130 para
encontrar los archivos de la materia TA130 de Juan que es un Usuario en esa computadora.

En un mismo dispositivo pueden coexistir diferentes sistemas de archivos y además de
distinto tipo. Los dispositivos de almacenamiento no dejan de ser otra cosa que memorias, como
la RAM, pero que persisten los datos entre reconexiones. Siendo estos dispositivos memorias
los mismos tienen posiciones numeradas y se utilizan para almacenar y recuperar los bytes
en esas posiciones. Cuando hablamos de diferentes sistemas de archivos queremos decir que
el formato en el cual se almacenan los datos y la metadata dentro del dispositivo pueden ser
diferentes, habiendo muchos formatos distintos y coexistiendo más de uno en el mismo sistema
operativo.

Incluso las tecnologı́as de los dispositivos pueden ser diferentes, por ejemplo, almacenando
en discos magnéticos bits según su polaridad, o almacenando en dispositivos ópticos que
pueden reflejar o no un bit, o almacenando en dispositivos de estado sólido que utilizan
semiconductores que conducen o no.

El sistema de archivos es una capa de abstracción que nos provee el sistema operativo en
el cual nosotros podemos pensar en estas entidades de archivos, con sus datos y su metadata,
guardados dentro de directorios e independizándonos de dónde o cómo se almacenan esos
archivos.

Incluso mientras que en sistemas Windows los archivos se identifican con su unidad (C:,
D:, etc.) y cada dispositivo fı́sico (o virtual) genera una unidad en el común de los sistemas
operativos se omite el concepto de unidad y los dispositivos se pueden asociar a ubicaciones
arbitrarias del árbol de directorios. Por ejemplo, en nuestro ejemplo anterior, tal vez la carpeta de
usuario de Juan se almacena en un disco diferente al del resto de los usuarios con redundancia
para que Juan no pierda los datos en caso de falla.

Más aún, dentro de la abstracción que consistuye el sistema de archivos, incluso pueden
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mostrarse como archivos y directorios cosas que no son dispositivos fı́sicos. Por ejemplo,
unidades de red, o un dispositivo que enchufemos como un teléfono celular o una cámara de
fotos, o cualquier entidad o protocolo que pueda pensarse como un canal donde escribir datos
o del cual leer información.

La idea del sistema de archivos es uniformizar todos los detalles de implementación y
simplificarlos en que un archivo tiene una ruta, que será su ubicación dentro del árbol de
unidades y directorios y que si conozco esa ruta (y tengo los permisos suficientes) puedo
acceder a su contenido. Si eso realmente es un archivo o es otro tipo de entidad virtual o si está
almacenado remotamente no nos interesa.

15.2. Interacción con los archivos

Dado que el concepto de archivo es una abstracción y que constituye una interfaz de alto
nivel que provee el sistema operativo, al igual que en el caso de la memoria será un recurso que
gestionaremos a través de él.

De forma simplificada la secuencia empezará diciéndole al sistema operativo que queremos
tener acceso a determinado archivo. Para referirnos a nuestro archivo lo haremos por su ruta,
donde llamamos ruta a la secuencia de unidades y directorios que dan la ubicación única del
archivo. Por ejemplo:

/home/juan/TA130/ej1.c

podrı́a ser la ruta completa del ej1.c que el usuario Juan tiene en su carpeta personal en un
sistema basado en Unix, mientras que

D:\Usuarios\Juan\TA130\ej1.c

podrı́a ser una ruta similar en un sistema Windows. En el caso de Windows D: será una unidad,
por ejemplo una partición determinada de un disco rı́gido mientras que en el caso de Unix
todos los archivos penden del directorio raı́z / sin importar su unidad, las unidades se “montan”
en cualquier ruta. También cambian en uno y otro caso los separadores de directorio siendo /
en Unix y \ en Windows. Y hay más diferencias, como por ejemplo que en Unix importan las
mayúsculas y minúsculas, no existe el concepto de extensión, los nombres pueden contener
cualquier carácter y una serie más de caracterı́sticas en las que no vamos a profundizar.

Las rutas que acabamos de dar, que comienzan con / en el caso de Unix y con la unidad
(por ejemplo D:) en el caso de Windows se denominan rutas absolutas. Es decir, hay un solo
archivo que responde a esa ruta en todo el sistema operativo y eso constituye un identificador
único. No importa en dónde esté ubicado, la ruta absoluta me permite identificar un archivo de
forma unı́voca.

Ahora bien, en ambos sistemas, si estuviera ubicado en la respectiva carpeta personal de Juan
y quisiera referirme al mismo archivo podrı́a hacerlo como TA130/ej1.c (o con las barras inver-
tidas en Windows). Notar que esta ruta no empieza ni con la raı́z ni con la unidad, es una ruta
relativa. Si estoy parado en /home/juan esta ruta se traducirá como /home/juan/TA130/ej1.c,
pero si estuviera en /usr/lib se convertirá en /usr/lib/TA130/ej1.c. Se dice entonces que
es una ruta relativa, porque según dónde esté posicionado va a hacer referencia a diferentes
ubicaciones.

Tiene sentido utilizar rutas relativas por simplicidad porque son más cortas, pero también
cuando desconocemos la ruta absoluta. Por ejemplo, cuando hablamos de modularización en el
capı́tulo 14 nosotros podemos distribuir un proyecto para que cualquier persona se lo descargue
y lo compile en su computadora. Nosotros no sabemos en qué lugar de la computadora va a
descargarlo, ni tampoco podemos imponerlo. Entonces, cuando incluı́mos un archivo haciendo
#include "archivo.h" utilizamos rutas relativas. Es decir, ese archivo .h deberá estar en la
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misma ruta que el .c que lo incluye. Eso le da flexibilidad al usuario de compilarlo donde
prefiera.

Volviendo a la interacción con el sistema operativo, entonces nosotros le pediremos abrir
el archivo dándole su ruta. Esta operación podrá concretarse o no dependiendo de si la ruta
es correcta, el archivo existe, los permisos de mi usuario son suficientes para manipularlo, el
archivo no está ocupado y un sinfı́n de eventualidades que nos exceden y podrı́an suceder.
A diferencia de los pedidos de memoria donde una falla en el pedido indicarı́a que se agotó
la memoria total del dispositivo y siempre podrı́a decir “voy a pedir sólo 2 bytes, no puede
fallar”1 hay tantas cosas externas que condicionan el acceso a un archivo que nunca podemos
asumir que pudo abrirse sin chequearlo. Asumamos que el archivo pudo abrirse.

Los archivos son entidades de acceso secuencial, lo que ya llamamos streams (o flujos).
Cuando abrimos un archivo la abstracción setea un cursor al primer byte de dicho archivo.
Cada vez que hagamos, por ejemplo, una operación de lectura, se devolverá el valor en ese byte
y se adelantará una posición el cursor. Si hiciésemos una operación de escritura, se escribirá en
ese byte y se adelantará el cursor. Es decir, los archivos se recorren desde el comienzo hasta el
final avanzando de a una posición por vez de forma automática.

Si bien existe la posibilidad manipular el cursor para acceder a posiciones de forma aleatoria,
preferiremos no hacerlo nunca. Todos los dispositivos fı́sicos están diseñados para acceder
en forma secuencial. Incluso hay dispositivos que no soportan ni rebobinar ni avanzar en el
tiempo. Esto es parte del concepto de stream, tenemos que considerar a la información como
una secuencia de bytes que recibimos o enviamos con un determinado orden, si los dejamos
pasar los perdemos, si ya los emitimos no podemos arrepentirnos. Es el concepto de entrada
salida que vimos cuando hablamos de la interacción con el usuario. ¿Qué serı́a retroceder la
entrada del usuario?, ¿pedirle que vuelva a ingresar lo que ya ingresó? Entonces en el modelo
de archivos de C vamos a considerar que toda lectura o escritura se realiza de forma secuencial
y en una única pasada.

Una vez abierto el archivo, con el cursor puesto en la primera posición podremos escribir o
leer tantas veces como queramos o hasta agotar el recurso. Cuando terminemos esta operación
entonces tendremos que liberarlo. Al igual que lo que dijimos con respecto a la apertura, la
liberación es mucho más importante que la de la memoria, no devolver un archivo podrı́a
implicar que los cambios que realicemos en él nunca se vuelquen fı́sicamente en el dispositivo,
podrı́a dejarlo inaccesible en el sistema de archivos, podrı́a incluso corromperlo. Los archivos
son recursos escasos y además recursos compartidos, tenemos que minimizar el tiempo que
nuestras aplicaciones los bloquean.

15.3. El tipo FILE

Siendo que los archivos son una abstracción del sistema operativo no es de extrañar que
la implementación de archivos en la biblioteca de C sea a través de un TDA. Como parte
de la funcionalidad de entrada/salida el compilador implementa el tipo FILE que sirve para
manipular archivos. Siendo un TDA tendrá un constructor, que se corresponde con abrir el
archivo, un destructor, que lo cierra y libera sus recursos, y luego primitivas que sirven para
leer o para escribir datos en él.

Empecemos por ellos:

1 FILE *fopen(const char *ruta , const char *modo);
2 int fclose(FILE *f);

El constructor fopen() intenta abrir el archivo dado por la ruta y en el modo que le
indiquemos y nos devuelve el TDA creado o NULL en caso de falla. Cabe destacar que en la ruta

1No, tampoco pueden hacer esa asunción en el curso.
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podemos utilizar / como separador de directorios independientemente de la plataforma en la
que estemos, esto es importante porque las barras invertidas en C son el carácter de escape y es
muy frecuente olvidarse de escapear una barra. El destructor fclose() libera los recursos del
archivo f, devuelve 0 si el archivo no tuvo problemas o EOF si sı́ los tuvo. Cuando se habla de
“tener problemas” no es durante el cierre sino sobre toda la vida del archivo. Si bien todas las
primitivas del archivo nos indican si hubo éxito o no en la operación que quisimos realizar,
muchas veces es engorroso validar en cada una de las operaciones de lectura o de escritura. Si
hubiera una falla la misma serı́a recordada por el TDA y al momendo del cierre, si no es que es
ya muy tarde, podemos validar una única vez si todo el proceso fue exitoso o no. Dependiendo
de la aplicación puede ser adecuado o no.

15.3.1. El modo

El segundo parámetro del constructor es el modo, el modo lo que va a dar es información
de qué queremos hacer con el archivo. El estándar provee múltiples modos pero nosotros nos
centraremos en solamente 3, dado que los demás no son usuales en programación de alto nivel.

A diferencia de lo que se explicó genéricamente, en C se suelen abrir flujos o de lectura o de
escritura, pero no de ambas a la vez. El modo principalmente indicará si estamos abriendo el
archivo para leer de él o para escribir en él. Si el archivo fue abierto para lectura tendremos que
utilizar primitivas de lectura, si lo abrimos para escritura tendremos que utilizar primitivas de
escritura.

Los modos más usuales son:

r: Abre el archivo en modo lectura (read). Si el archivo no existe falla.

w: Abre el archivo en modo escritura (write). Si el archivo no existe lo crea, si el archivo existe
lo trunca, esto es elimina todo su contenido.

a: Abre el archivo en modo añadidura (append), que es un modo de escritura. Si el archivo no
existe lo crea, si el archivo existe el cursor se ubica al final del mismo, es decir lo que
escriba se escribirá al final de lo que ya estaba.

Cabe aclarar que en todos los casos también hay fallas si las rutas son incorrectas, los permisos
no son adecuados, etc.

Hay otra indicación de modo que es ortogonal a estas vistas que retomaremos más adelante.

15.4. Archivos de texto

Llamamos archivos de texto, o de texto sencillo (o texto plano por una mala traducción de
plain text) a los archivos que contienen caracteres. Es decir, archivos que están pensados para
ser legibles por un ser humano.

Cuando manipulemos archivos de texto tendremos, al igual que cuando hablamos de
interacción con el usuario (ver sección 6.8), dos estrategias principales: Interactuar de a un
carácter por vez o interactuar de a lı́neas.

Las funciones de lectura en archivos de texto son:

1 int fgetc(FILE *f);
2 char *fgets(char *s, int size , FILE *f);

La función fgetc() lee un carácter de un archivo f (abierto en modo lectura, no habrı́a que
aclararlo) y lo devuevle, en caso de falla devuelve EOF. La función fgets() es una vieja
conocida, lee una lı́nea del archivo f hasta alcanzar el ’\n’ o size-1 caracteres y la almacena
en s, devuelve s o NULL en caso de falla.
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En ambos casos cuando decimos falla podemos querer decir tanto que algo falló realmente
o que se terminó el archivo f y ya no hay nada más que leer. En C no podemos anticipar
cuándo se termina un archivo, nos enteraremos que se terminó cuando intentemos leer más
allá del final. La lectura del último carácter será totalmente normal y el archivo todavı́a estará
no terminado incluso aunque el cursor ya se haya incrementado más allá del final. Al leer con
el cursor más allá del final se dispará la señal de final de archivo.

De modo análogo, las funciones de escritura de archivos de texto son:

1 int fputc(int c, FILE *f);
2 int fputs(const char *s, FILE *f);
3 int fprintf(FILE *f, const char *formato , ...);

La función fputc() escribe el carácter c en el archivo f. La función fputs() imprime la cadena
s en el archivo f. La función fprintf() imprime según el formato en el archivo f. Todas estas
funciones devuelven un número positivo si todo funcionó bien (en el caso de fputc() el carácter
impreso, en las otras el número de bytes que escribieron) o EOF en caso de falla.

Por ejemplo:

1 # include <stdio.h>
2

3 int main(void) {
4 FILE *f = fopen("TA130/ej1.c", "r");
5 if(f == NULL) {
6 fprintf(stderr , "No␣pudo␣abrirse␣el␣archivo .\n");
7 return 1;
8 }
9

10 int c;
11 while ((c = fgetc(f)) != EOF)
12 putchar(c);
13

14 fclose(f);
15 return 0;
16 }

Abre el archivo de ruta relativa TA130/ej1.c2 en modo lectura, luego lee del mismo de a un
carácter por vez hasta que se termine la entrada e imprime cada uno de esos caracteres por
stdout.

15.4.1. stdin, stdout y stderr

Señalemos el elefante en la habitación, venimos utilizando varias de las funciones de archivos
desde que hablamos de interacción con el usuario en la sección 6.8, y esto es porque los flujos
de C internamente son archivos. Es decir, en algún lugar está definido:

1 FILE *stdin , *stout , *stderr;

y es el compilador el que se encarga de abrir estos archivos si los utilizamos.3

Siendo que ya estamos familarizados con flujos de texto, e incluso con utilizar archivos
como si fueran flujos (ver 6.8.5) utilicemos ese conocimiento previo para asimilar archivos.

2O TA130\ej1.c, si estuviéramos en Windows.
3Si en algún momento notaste que Valgrind te indicaba pedidos de memoria que no hiciste, probablemente sean los

buffers de estos flujos.
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Como se viene diciendo repetidas veces en este capı́tulo interactuar con archivos es similar a
interactuar con el usuario, hay caracteres en secuencia que podemos leer o escribir. Las funciones
para leerlos y escribirlos en algunos casos son similares, en otros casos son literalmente la
misma función. En muchos casos las funciones de interacción son wrappers de las funciones
de archivos, por ejemplo putchar(c); no es otra cosa que fputc(c, stdout);, getchar(); es
fgetc(stdin); y printf(...); es fprintf(stdout, ...);.

Y ¡atención! la biblioteca es inconsistente, puts(s); y fputs(s, f); no son equivalentes.
La primera imprime por stdout la cadena s y además imprime un ’\n’. En cambio fputs()
imprime solamente s sin agregar nada más.

15.4.2. El ’\n’

Antes que nada reiteremos lo que dijimos en la sección anterior, los flujos con los que
estamos interactuando desde el hola mundo son archivos, conocemos cómo se comportan.
Recordemos entonces el hola mundo:

1 printf("Hola␣mundo\n");

En su momento dijimos que el ’\n’, el caracter de line feed (LF), imprimı́a “un enter” al
final de la lı́nea. Y está bien la afirmación, pero es más complejo.

El carácter ’\n’ es el carácter número 10 en la tabla ASCII. Ahora bien, sólo en sistemas
operativos derivados de Unix ’\n’ dispara un final de lı́nea.

En sistemas operativos derivados de Macintosh (Apple) el final de lı́nea se dispara con el
carácter ’\r’, el carácter de carriage return (CR), el 13 de la tabla ASCII.

Y en sistemas operativos derivados de DOS (Microsoft) el final de lı́nea se dispara con la
secuencia "\r\n" (CR-LF).

Con esto queremos decir que diferentes terminal necesitan diferentes secuencias de caracteres
para generar el final de lı́nea. Ahora bien, cuando presentamos el hola mundo no hicimos
ningún comentario al respecto de la portabilidad de haber finalizado con ’\n’ en distintas
plataformas... y no lo hicimos porque el hola mundo que presentamos ya es portable.4

El compilador conoce la plataforma en la cual estamos y sabe que semánticamente para
C imprimir un ’\n’ significa “imprimir un final de lı́nea”. Entonces, se toma la libertad de
reemplazar tanto en las operaciones de entrada como en las operaciones de salida esta entidad
por lo que corresponda. Esto quiere decir que cuando manipulemos streams de texto en
Windows escribir un ’\n’ se reemplazará por escribir la secuencia {13, 10} y también significa
que si estamos en un sistema operativo de Apple cuando se lea el byte 13 a nosotros nos llegará
el carácter ’\n’. Es decir, se hará una traducción en uno y otro sentido para que para nosotros
sea natural que ’\n’ es el finalizador de lı́neas, como en Unix, el sistema operativo que le dió
nacimiento al lenguaje C.5

Esto que estamos mencionando es una caracterı́stica que nos interesa particularmente para
archivos de texto, y profundizaremos en esto en la siguiente sección.

Siendo que cuando compilemos un programa para Windows funcionará en Windows y
cuando compilemos un programa para Mac funcionará en Mac los archivos de texto6 serán
consistentes con la plataforma en la que estemos. La incompatibilidad de los archivos de textos
en diferentes plataformas nos interesará sólo si quisiéramos abrir un archivo generado en
Windows en un sistema operativo con otra convención de finalización de lı́nea, pero esto será
algo que no podremos resolver con archivos de texto.

4Voy a omitir decir esta vez “y con esto terminamos de entender el hola mundo” porque ya debe ser la décima vez que lo
decimos en este apunte.

5Similar a lo que dijimos del separador de directorios en las rutas para fopen().
6Y los flujos estándar de la terminal.
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15.5. Archivos binarios

En contraposición con los archivos de texto, los archivos binarios no están pensados para
ser legibles, en un archivo binario se vuelcan variables del mismo modo (o de forma similar)
a como están en memoria. Es decir, si en la memoria tengo un entero de 16 bits de contenido
0xDEAD en un archivo de texto podrı́a imprimirse por ejemplo como "57005\n" una secuencia
de caracteres en base decimal. En binario sencillamente se podrı́a escribir como la secuencia
de bytes {0xDE, 0xAD}... aunque también podrı́a escribirse como la secuencia {0xAD, 0xDE}.
Antes de explicar por qué hay dos formas posibles de escritura cerremos la idea, y digamos,
se escribirán 16 bits, tal cual como esos bits estaban en la memoria. Son 2 bytes, nada más, no
hay una traducción a ASCII. Y escribir los datos tal cual como estaban en la memoria implica
que cuando se lean se pueden subir a la memoria tal cual como están en el archivo y eso ya
representará de nuevo la cantidad 0xDEAD.

Al respecto de las dos formas de almacenar 0xDEAD en memoria hay platarformas donde
los bytes de los números se almacenan primero los más pesados y después los más livianos
y otras en las que se almacenan al revés. La primera convención se llama big-endian mientras
que la otra se llama little-endian. Como con todo, si hasta ahora no nos preocupamos por
esto, ni siquiera cuando presentamos el manejo de bits a bajo nivel es porque esto es un
detalle de implementación que no afecta a ninguna operación. Es más ni siquiera es sencillo
diagnosticar si estamos en una plataforma de un tipo o del otro... ahora bien, esto sı́ nos
interesará si quisiéramos levantar en una plataforma lo que generamos en otra. Aunque
también nos preocupará si los enteros tienen el mismo tamaño en una u otra, o cómo se alinean
las estructuras, etc.

Se puede decir que hay dos universos totalmente disjuntos de aplicaciones de archivos
binarios: El primero es persistir entidades de la memoria de mi aplicación en un achivo para
recuperarlas luego. A diferencia de escribir en modo texto, donde tengo que procesar los datos y
convertirlos, escribir datos binarios se limita sencillamente a realizar un volcado de la memoria.
Por lo que dijimos en el párrafo anterior, esta persistencia depende de que nunca pretenda
llevarme ese volcado a otra plataforma. El segundo es codificar dentro de un archivo datos de
algún formato bien conocido, como formatos de imágenes, de documentos, de audio, video,
etc. En este caso lo importante es la interoperabilidad, no importa en qué dispositivo abramos
una imagen JPEG, queremos ver la imagen que ella representa, es por eso que en ese tipo
de formatos habrán especificaciones formales que dirán cómo se codifican los datos, con qué
tamaños, con qué endianness, etc.

15.5.1. El modo binario

Imaginemos que tenemos el entero de 16 bits 0x0D0A, prestar atención a sus bytes que no
son otros que {13, 10}7 o, expresado de otra forma, {’\r’, ’\n’}. Si quisiéramos escribir
esa secuencia de bytes en un sistema Windows dijimos que al querer escribir ’\n’ la capa
de abstracción del compilador lo reemplazará por "\r\n". Análogamente, si tuviéramos un
archivo que contuviera la secuencia 0x0D0A y lo leyéramos en Windows obtendrı́amos en vez
de dos bytes apenas un ’\n’. Vamos a tener estos problemas en todas las plataformas salvo en
Unix donde lo que representamos en C como ’\n’ se representa en el sistema operativo del
mismo modo.

Es evidente que esta caracterı́stica que nos resulta tan cómoda para manipular archivos
de texto va a romper por completo el procesamiento de archivos binarios. Por eso es que hay
un modo adicional a los que ya vimos que es el modo b (binary) que se puede agregar a los
modos que ya vimos, por ejemplo "wb" para escribir en modo binario. Abrir un archivo en
modo binario desactiva la traducción del ’\n’, en modo binario al archivo le llega exactamente

7En el orden que corresponda según el endianness de la plataforma.
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lo que se escribió y lo mismo vale para la lectura.

15.5.2. Funciones

Abrir un archivo en modo binario no inhabilita usar las primitivas que ya vimos de lectura
y escritura, pero probablemente no nos sirvan para las operaciones que queremos realizar.

Como dijimos, la manipulación binaria implica querer volcar desde y hacia la memoria, y se
provee un par de funciones para realizar esta operación:

1 size_t fwrite(const void *ptr , size_t size , size_t nmemb , FILE *f)
↪→ ;

2 size_t fread(void *ptr , size_t size , size_t nmemb , FILE *f);

Como se ve ambas funciones tienen prácticamene la misma firma. La primera escribe en un
archivo (es decir vuelca desde la memoria), la segunda lee de un archivo (es decir vuelca hacia
la memoria). Los datos en memoria están en ptr, cada uno de los datos mide size, hay nmemb
datos y el archivo a operar es f. Las funciones devuelven cuántos datos pudieron escribir/leer
respectivamente.

Por ejemplo, si quisiéramos volcar un vector de enteros en un archivo:

1 # include <stdio.h>
2

3 int main(void) {
4 int v[5] = {1, 2, 3, 4, 5};
5

6 FILE *f = fopen("vector.bin", "wb");
7 if(f == NULL) {
8 fprintf(stderr , "No␣pudo␣abrirse␣el␣archivo\n");
9 return 1;

10 }
11

12 if(fwrite(v, sizeof(int), 5, f) != 5) {
13 fprintf(stderr , "Fall ó␣la␣escritura␣de␣alguno␣de␣los␣datos

↪→ \n");
14 fclose(f);
15 return 1;
16 }
17

18 if(fclose(f) == EOF) {
19 fprintf(stderr , "Hubo␣alguna␣falla␣escribiendo␣en␣el␣

↪→ archivo\n");
20 return 1;
21 }
22

23 return 0;
24 }

Abrimos un archivo relativo vector.bin para escribir en modo binario. Intentamos escribir los
5 enteros del vector v en bloque. Como la función nos indica cuántos elementos pudo escribir
deberı́a devolvernos que escribió los 5, cualquier otro valor que devuelva será un error. Luego
estamos también validando el valor de retorno de fclose(). Recordemos que dijimos que al
cerrar el archivo nos avisaba si habı́a habido algún error a lo largo de toda la manipulación del
archivo, por lo que en este ejemplo estamos validando de forma redundante. Por lo general,
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según la criticidad del problema, nos interesará o validar cada una de las lecturas/escrituras o
sencillamente validar únicamente al cerrarlo.

Miremos el contenido del archivo en una plataforma x86:

$ hd vector.bin
00000000 01 00 00 00 02 00 00 00 03 00 00 00 04 00 00 00 |................|
00000010 05 00 00 00 |....|
00000014
$

El comando hd (hex dump) muestra cada uno de los bytes de un archivo en formato hexadecimal.
La primera columa es el ı́ndice, luego vienen los bytes, y la última columna mostrará la
representación ASCII en caso de tratarse de caracteres imprimibles (en este caso ninguno lo es).
Como se puede observar x86 es una plataforma de 32 bits de tipo little-endian.

El parámetro de retorno de fread() no sólo nos sirve para validar lo que intentamos leer,
también nos puede servir para leer los datos que haya en un archivo, por ejemplo con el
siguiente fragmento:

1 FILE *f = fopen("vector.bin", "rb");
2 if(f == NULL) return 1;
3 int v[100];
4 size_t n = fread(v, sizeof(int), 100, f);
5 // n == 5
6 fclose(f);

Intentamos leer hasta 100 enteros del archivo que generamos antes, como el archivo se termina
al quinto entero nos dirá que pudo leer sólo 5, no importa que no hayamos leı́do 100. Es más, si
hubierámos leı́do 100 darı́a para sospechar si quedaron enteros sin leer del archivo.

15.5.3. Lectura independiente del endianness

Los ejemplos anteriores son volcados de memoria en crudo y dependen de la plataforma.
Dijimos que esa era una de las aplicaciones de archivos binarios, pero también dijimos que hay
todo un universo donde querremos leer o escribir formatos conocidos donde se especifica un
determinado endianness.

Si tuviera que escribir un entero de 32 bits en little-endian y supiera que estoy en x86 y
con un GCC que escribe números de 32 bits, podrı́a hacer lo que hice antes. Ahora bien, mi
código no va a ser portable. Si alguien compilara el mismo código en otra plataforma no estarı́a
garantizado ni que se escribieran 32 bits ni el endianness. Entonces veamos cómo podemos
hacer para leer o escribir en un formato especı́fico independientemente de la plataforma en la
que estemos.

Supongamos que sabemos que un determinado formato contiene un entero de 32 bits escrito
en little-endian. Dado que el endianness afecta sólo a datos multibyte si nosotros leyéramos

1 uint8_t bytes [4];
2 fread(bytes , 1, 4, f);

sabrı́amos que en bytes[0] está el byte más liviano, en bytes[1] el siguiente y ası́, porque nos
dijeron que el archivo codificaba enteros de 32 bits en little-endian.

¿Sabemos formar un número de 32 bits juntando 4 bytes separados? Claro que sabemos, lo
vimos en el capı́tulo 10:

1 uint32_t dato = bytes [0] | bytes [1] << 8 | bytes [2] << 16 | bytes
↪→ [3] << 24;
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No olvidemos de que el endianness es algo interno de la arquitectura que no afecta a cómo
vemos las operaciones, el byte que desplazamos 24 veces a la izquierda va a quedar en el byte
más pesado de dato. No importa si en la memoria ese byte se almacena en &dato o 3 bytes más
adelante, será el byte más pesado.

Análogamente podemos descomponer cualquier dato de cualquier tamaño en los bytes que
lo componen y ordenarlos para escribirlos de forma individual en el endianness que queramos,
sin importar el endianness de nuestra plataforma.
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Capı́tulo 16

Argumentos en Lı́nea de Comandos
(CLA)

16.1. Argumentos

Recordemos la compilación del hola mundo:

$ gcc hola.c -o hola.exe -std=c99

El GCC es un programa, particularmente programado en C1, y está obteniendo información
del usuario (de nosotros) de una forma diferente a la que nosotros conocemos. El GCC no es un
programa interactivo, es decir, nunca nos pregunta cosas que nosotros ingresamos por stdin
si no que nosotros le decimos qué queremos hacer en el momento de la ejecución pasándole
parámetros en la invocación.

El estándar de C admite dos posibles firmas para la función main(). Una es la firma que ya
vimos int main(void) mientras que la otra firma es: nt man(int argc, char *argv[]) ...

Esta firma recibe dos parámetros: Un entero y un arreglo de cadenas de caracteres. Si
bien es convención llamar a estos parámetros argc (cantidad de argumentos) y argv (vector
de argumentos) respectivamente, podrı́amos usar cualquier nombre2. El sistema operativo al
realizar la invocación será el responsable por pasarle estos parámetros al main() ya que esta
función es el punto de entrada.

En el ejemplo del GCC que vimos al comienzo el sistema operativo generarı́a esta llamada:
main(5, {"gcc", "hola.c", "-o", "hola.exe", "-std=c99", NULL});. Es decir, como su
nombre lo indica, argc es la cantidad de argumentos suministrados y argv es un vector con
cada uno de ellos. Notar que argv mide uno más, porque contiene el centinela NULL para
indicar la finalización, lo cual es redundante con argc dado que argv[argc] == NULL. Notar
que el primer argumento es el nombre del programa, entonces nunca puede haber menos de
un argumento porque el programa fue invocado para ejecutarlo.

Sobre el tema en sı́ no hay mucho más que decir, lo complejo no es qué recibe un programa
si no cómo operarlo después. Es decir, ¿cómo hace el GCC para activar o desactivar opciones
en función de sus argumentos, procesar estos argumentos, etc? Bueno, eso ya tendrá que ver
con la funcionalidad del GCC.

Los argumentos en lı́nea de comandos son útiles cuando queremos generar programas
no interactivos, es decir, que no requieran un operador ejecutándolos y su invocación está
automatizada. También son prácticos cuando tenemos programas que tienen muchas opciones
y modos de funcionamiento3, es mucho más práctico que el usuario lea el manual y evalúe

1¿Con qué compilador de C compilamos un compilador de C programado en C?, ¿eh?
2Pero es convención llamarlos ası́, entonces no uses otro nombre.
3Si bien nosotros sólo vimos una decena, el GCC tiene más de 5000 parámetros.
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16.2. USO DE ARGUMENTOSCAPÍTULO 16. ARGUMENTOS EN LÍNEA DE COMANDOS (CLA)

cuáles opciones quiere activar y las proporcione al invocar a que el programa le pregunte por
cada una de esas opciones.

Cabe destacar que recibir opciones por argumentos no es excluyente con interactuar luego
con el usuario, son dos maneras de controlar el funcionamiento de un programa.

16.2. Uso de argumentos

Veamos un ejemplo de un programa con argumentos:

sumar.c

1 # include <stdio.h>
2 # include <stdlib.h>
3

4 int main(int argc , char *argv []) {
5 if(argc != 3) {
6 fprintf(stderr , "Suma␣dos␣nú meros.␣Uso:␣ %s␣<num1 >␣<num2 >\n

↪→ ", argv [0]);
7 return 1;
8 }
9

10 float n1 = atof(argv [1]);
11 float n2 = atof(argv [2]);
12

13 printf(" %f\n", n1 + n2);
14

15 return 0;
16 }

Se espera que el programa se use ası́:

$ ./sumar
Suma dos números. Uso: ./sumar <num1> <num2>
$ ./sumar 4 7
11
$

Siendo que el programa no interactúa con el usuario, entonces el programa tiene que poder
guiar a un usuario que no sepa cómo invocar al programa. Dada la invocación que nosotros
esperamos donde necesitamos recibir dos números además del nombre del programa, entonces
será válida una invocación con 3 argumentos. Ese es el chequeo que hacemos para mostrar la
ayuda si no se valida. Notar como al mostrar la ayuda podemos obtener el nombre de nuestro
programa que está contenido en argv[0].

Más allá de educar al usuario en el uso del programa, notar que más adelante queremos
acceder al contenido de argv[1] y argv[2]. Si no validamos primero la existencia de esos
argumentos (sea mirando argc o iterando argv hasta el centinela) no podemos acceder a ellos
con seguridad. Si el programa hubiera sido invocado sin argumentos en argv[1] tendrı́amos
un NULL y acceder a argv[2] serı́a directamente una violación de memoria. No puede accederse
a argumentos sin validar antes que existan.

Luego hay que tomar en cuenta que, similar a la interacción con el usuario, el usuario
ingresa cadenas de caracteres. Si necesitáramos otros tipos deberemos hacer las conversiones
correspondientes. Además, al tratarse de entrada del usuario habrá que validar que los valores
sean válidos4.

4En nuestro ejemplo convertimos con atof(), pero si quisiéramos verificar que realmente se tratara de números
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16.3. Comodines

Te recomendamos que juegues con este ejemplo:

argumentos.c

1 # include <stdio.h>
2

3 int main(int argc , char *argv []) {
4 printf("argc␣=␣ %d\n", argc);
5 for(size_t i = 0; argv[i] != NULL; i++)
6 printf("argv[ %zd]␣=␣\" %s\"\n", i, argv[i]);
7 return 1;
8 }

¿Qué salida ves si ejecutás?

$ ./argumentos hola que tal
$ ./argumentos hola que tal
$ ./argumentos hola\ que tal
$ ./argumentos hola "que tal"
$ ./argumentos hola que tal *
$ ./argumentos hola que tal *.*

No vamos a explicar los primeros, fijate, pero vamos a profundizar en el *.
Como dijimos los argumentos los genera el sistema operativo, y no necesariamente los

genera de forma literal de lo que el usuario escribe. Algunos de ellos constituyen expresiones.
En la sección 14.4 cuando vimos la confección del archivo Makefile en la etiqueta clean

escribimos rm *.o y dijimos que eso borraba todos los códigos objeto. Los código objeto
terminan en .o y el asterisco es un comodı́n que significa “cualquier cosa”, es decir, el patrón
*.o significa “los nombres de los archivos que tengan cualquier cosa y terminen en .o”. El
sistema operativo confecciona una lista de los archivos que validen ese patrón y se los pasa
como argumentos al programa rm en este caso.

Similar al asterisco está el comodı́n ?, el mismo significa “cualquier letra”. Por ejemplo el
patrón archivo?.c va a validar contra los archivos archivo1.c y archivos.c pero no contra
archivo42.c.

Si bien todas las terminales implementan estos comodines, puede haber diferencias en
cómo funcionan en Windows dado que en ese sistema operativo los nombres de los archivos
contienen extensiones y eso cambia su comportamiento. Además en terminales particulares hay
otros patrones mucho más complejos que estos dos presentados acá.

podrı́amos haber utilizado strtof().
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Capı́tulo 17

Complejidad Computacional

17.1. Eficiencia

En la sección 11.7 se presentó un ejemplo muy similar a este:

1 /* Lee enteros de stdin hasta agotar la entrada , devuelve el
2 vector de enteros le ı́dos por el nombre y la cantidad de enteros
3 a trav és de n. */
4 int *leer_enteros(size_t *n) {
5 int *v = NULL;
6 size_t i = 0;
7

8 char buffer [100];
9 while(fgets(buffer , 100, stdin) != NULL) {

10 int *aux = realloc(v, (i + 1) * sizeof(int));
11 if(aux == NULL) {
12 free(v);
13 return NULL;
14 }
15 v = aux;
16 v[i++] = atoi(buffer);
17 }
18

19 *n = i;
20 return v;
21 }

en el cual se lee de la entrada una cantidad desconocida n de enteros. La pregunta que queremos
hacernos es si la eficiencia de nuestra implementación depende de n y en qué medida lo hace.

Antes que nada, cuando hablamos de eficiencia hablamos principalmente de dos cantidades:
Tiempo y recursos. El tiempo tendrá que ver con la cantidad de operaciones que se realicen y
los recursos que consuma será la cantidad de memoria requerida. Profundizaremos más sobre
esto más adelante, pero en principio no nos interesa tanto el tiempo o la cantidad de bytes
de memoria1 si no cuál es su relación con el tamaño n del problema. Es decir, si se duplica n,
¿qué pasará con los recursos?, ¿serán los mismos?, ¿se duplicarán?, ¿se multiplicarán por, por
ejemplo, 4?2

1Donde la cantidad de memoria podemos calcularla, pero el tiempo dependerá de dónde vayamos a correr esto.
2Hagan sus apuestas.
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Para simplificar diremos que asignar una variable, obtener el valor de ella, hacer una
operación aritmética, etc. son operaciones que llevan siempre el mismo tiempo. O sea, no
dependen de qué tan grande sea el número que asigno, o si estoy operando dos números muy
grandes, etc.

Si miramos el código vamos a ver que hay una secuencia de estas operaciones sencillas,
seguidas de un ciclo que se va a ejecutar n veces. Dentro de este ciclo tenemos operaciones
sencillas con excepción de una llamada a fgets(), una llamada a realloc() y otra a atoi().
Si el tiempo que lleva hacer todas las operaciones que están fuera del bucle es a y el tiempo que
lleva hacer todas las operaciones que están dentro del bucle es b entonces el tiempo total será
a + nb, siendo que el código de b se ejecuta n veces.

Como dijimos, las operaciones de a son operaciones sencillas, declaraciones de variables,
asignaciones, un return, por lo que este tiempo si pudiéramos medirlo tardarı́a una determina-
da cantidad que no depende del tamaño de n. Es decir, es un tiempo fijo, a. Ahora deberı́amos
ver si las operaciones del ciclo también son independientes del tamaño.

Tenemos la llamada a fgets(). La cantidad de operaciones que se ejecuten estará dada por
cuántos caracteres ingrese el usuario. Este número es un número acotado, por un lado porque
no tiene sentido que ingresara números de más de 10 dı́gitos, dado que no podemos representar
números mayores a 232, pero también porque el problema está limitado por los 100 caracteres
de buffer[100]. Si bien cada llamada tardará un tiempo dependiente del número particular
que ingrese el usuario para esa iteración, el tiempo está acotado y podemos simplificar que
nunca superará un máximo que no depende del tamaño del problema (como mucho depende
del tamaño de buffer, pero es fijo).

Podemos hacer un análisis similar para la llamada a atoi(). Dependerá del largo del
número, pero el problema deberı́a suponer no más de 10 dı́gitos y en el peor de los casos está
acotado por los 100 caracteres del arreglo.

Nos queda la llamada a realloc(). Ya vimos el algoritmo de realloc() en la sección 11.6:
Se realiza un malloc() del tamaño pedido y si el mismo es positivo se realiza un memcpy() del
tamaño viejo al nuevo bloque de memoria. Luego se ejecuta un free() de la memoria anterior.

En nuestro problema, en cada iteración se ejecuta un realloc() de un vector de tamaño i
en un vector de tamaño i + 1, para poder almacenar el nuevo valor. Esto se va a ejecutar con
i = 0, 1, 2, . . . , n− 2, n− 1. Es decir el tamaño del vector que se redimensiona no es constante en
cada una de las iteraciones, si no que a medida que progresemos en la lectura el mismo crecerá
cada vez más hasta llegar a n.

La idea que habı́amos planteado de que si llamábamos b al tiempo de cada paso del ciclo
podı́amos estimar el tiempo total como a+ nb ya no tiene sentido, porque acabamos de descubrir
que b depende de n, o sea es b(n). Si quisiéramos estimar algo deberı́amos sumar los tiempos
de cada una de las iteraciones con i = 0 . . n− 1.

Olvidémosnos un rato de a y b y digamos que el tiempo de las operaciones es sencillamente
1. Bueno, el primer ciclo llevará tiempo 1, mientras que el segundo tiempo 2, y ası́ hasta que
el último ciclo llevará tiempo n.3. El tiempo total de nuestro ciclo entonces será 1 + 2 + . . . +
(n− 1) + n = ∑n

i=1 i.4 ¿Podemos resolver esa serie? Vamos a omitir el desarrollo pero se puede
probar que:

n

∑
i=1

i =
n2 + n

2
.

Veremos que es innecesario pero para dejar tranquilo a cualquiera que se haya emocionado
con las constantes reintroduzcamos todas las que hagan falta. Digamos que c es el tiempo de las
cosas que están dentro del bucle que no son el realloc() y que el realloc() tarda di, donde d

3Después podemos multiplicar esto por una constante arbitraria c y listo, tendrı́amos el tiempo real... si nos
interesara.

4Hay un ±1 según si miramos el tamaño viejo o el nuevo del vector, usemos estos rangos, no va a cambiar el
resultado que nos interesa.
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es una constante e i el tamaño. Bueno, podemos poner todo junto el tiempo que va a tardar
nuestro problema:

T = a + nc + d
n2 + n

2
.

(Estos dos términos que aparecieron no son otra cosa que nb(n) que lo tuvimos que contar uno
por uno.)

Si sirviera para algo, podrı́amos ejecutar el algoritmo con diferentes tamaños y estimar los
valores de las constantes para una determinada computadora y predecir el tiempo que tardarı́a
el algoritmo (en esa misma computadora) para un tamaño n cualquiera. En principio no sirve
para nada.

Esta expresión a la que llegamos es innecesariamente complicada porque si bien responde
la pregunta que nos habı́amos hecho incialmente que era “¿qué pasa si duplico n?” tiene tantos
términos que no nos deja verlo de forma intuitiva. Simplifiquemos, si n es lo suficientemente
grande, los términos constantes o lineales no van a incidir mucho en el resultado y finalmente
sólo va a pesar el término cuadrático. Es decir, podemos decir que

T ≈ d
2

n2.

Entonces, si para determinado n1 nuestro algoritmo lleva un tiempo t1 si tomamos un
n2 = 2n1, es decir duplicamos el tamaño, nuestro algoritmo llevará un tiempo t2 = 4t1, es decir
cuadruplicará el tiempo. ¿Habı́as adivinado?

El análisis del consumo de memoria es mucho más sencillo, al final se tendrán n unidades de
enteros en el heap. Aunque hay que notar que durante la llamada a realloc() en un momento
coexistirá el vector viejo y el nuevo, por lo que se necesita momentaneamente el doble de
memoria para redimensionar.

17.2. Notación O
Lo que presentamos hasta el momento es una introducción muy superficial al tema de la

complejidad computacional y no profundizaremos mucho más porque no es un tema de este
curso. Lo importante es tomar noción de que los algoritmos se crean para ser ejecutados y que
la eficiencia de los mismos se puede cuantificar tanto tomando tiempos en la vida real como
realizando análisis teóricos sobre el mismo código. El análisis de los tiempos no nos interesará
en principio para vaticinar cuántos segundos, minutos u horas tardará un algoritmo si no para
comparar diferentes algoritmos de forma general.

Introduciremos ahora una forma de notación que nos permite esto, comparar algoritmos:

Definición: Se dice que f (x) ∈ O(g(x)) si f (x) ≤ mg(x) con m > 0 y ∀x > x0.

No pretendemos que se entienda esta definición formal sino para qué sirve. Continuando el
ejemplo anterior podemos decir que

a + nc + d
n2 + n

2
∈ O(n2),

y de hecho fue la simplificación que hicimos oportunamente.
¿Qué nos pide la definición?, nos pide que busquemos una función que acote siempre por

encima a mi función, pero sólo a partir de un n mayor a un n0 arbitrario. Esa fue la simplificación
que hicimos cuando dijimos “si n es lo suficientemente grande”, a partir de determinado punto
mn2 será siempre más grande que a + nc + d n2+n

2 fijando un m positivo arbitrario.5

5Tanto m como n0 arbitrarios pero fijos, si existen entonces puedo aplicar la simplificación.
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El objetivo de la notación O es descartar tanto los términos de menor orden como todas las
constantes que tengan que ver con el tiempo concreto. Nuestro ejemplo anterior se simplifica
en decir que T = O(n2). Ahı́ debemos leer que T escala de manera cuadrática con respecto
al tamaño del problema n. No importa cuánto tiempo tarda, importa de qué manera va a
empeorar cuando agrandemos el problema. Si pudiéramos medir un determinado tiempo para
un determinado n entonces podrı́amos estimar cuánto llevarı́a para 100 veces más elementos.

Esta es la métrica que utilizaremos para clasificar algoritmos, por ejemplo un algoritmo
O(1) es un algoritmo que siempre tarda lo mismo, sin importar el tamaño del problema, un
algoritmo O(n) escala de forma lineal, habrá algoritmos O(n log n) que escalarán de forma
“cuasilineal”, y ası́. Independientemente de si un algoritmo lineal tarde 10 segundos y otro
algoritmo también lineal tarde 50 segundos, para la notación O ambos serán O(n) e idénticos,
porque lo que nos interesa es el comportamiento al variar el tamaño de la entrada, no si uno es
más veloz que el otro.

Más allá de la comparación con otros algoritmos, ¿la complejidad nos puede aportar más
información? Supongamos que corremos nuestro algoritmo de lectura de vectores de enteros
con 1000 elementos y nos lleva 1 segundo. No importa mucho el número, pero digamos que
es un segundo. Lo interesante serı́a ver que si el vector fuera 10 veces más grande llevarı́a
100 veces ese tiempo, o sea poco más de un minuto. Y si fuera 100 veces más grande llevarı́a
10000 veces, lo cual serı́a casi 3 horas. Y si fuera 1000 veces más grande llevarı́a 10 dı́as. Y con
10000 veces más llevarı́a 3 años. Paremos ahı́, si leer 1000 enteros nos lleva 1 segundo, leer 10
millones de enteros nos llevarı́a 3 años. La República Argentina tiene cerca de 50 millones de
habitantes, sin importar si 1000 elementos llevan 1 segundo o 1 milisegundo ¿podrı́amos usar
este algoritmo para leer los datos de un censo?6, ¿es un algoritmo que funciona bien?

El orden de complejidad no sólo nos permitirá comparar algoritmos, en algunos casos incluso
ante la ausencia de otro algoritmo nos permitirá descartar un algoritmo para determinadas
tareas.

17.3. Búsqueda binaria

Supongamos el problema de dado un arreglo de elementos saber si un elemento particular
está o no en el arreglo y cuál es su posición de estar. Esto es una búsqueda.

Podrı́amos implementar esta función de este modo:

1 /* Busca el elemento en un vector de n elementos.
2 Devuelve la posici ón del elemento o n de no encontrarlo. */
3 size_t buscar(int vector[], size_t n, int elemento) {
4 for(size_t i = 0; i < n; i++)
5 if(vector[i] == elemento)
6 return i;
7 return n;
8 }

De forma secuencial comparamos elemento con cada uno de los elementos vector[i] y si
lo encontramos devolvemos su posición.

Si bien la cantidad de operaciones dependerá de elemento y su posición en vector de forma
genérica podemos decir que el algoritmo es O(n), el tiempo escalará lineal con respecto a la
cantidad n de elementos. En principio que el algoritmo sea lineal lo hace mejor que el algoritmo
de lectura de enteros cuadráticos que analizamos en la sección anterior, ahora bien, ¿lineal es lo
mejor que podemos obtener?

6Los censos se realizan cada 10 años, sumar las respuestas del censo de EEUU de 1880 llevó más de 10 años y
motivó la adopción de tarjetas perforadas y sumadoras para el de 1890, este hecho marca el inicio de la historia de IBM
y del desarrollo de computadoras para resolver problemas.
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Siguiendo con los ejemplos cı́vicos, supongamos que te llaman para ser presidente de mesa
en unas elecciones donde en tu mesa hay un padrón de 1000 electores ordenados de forma
alfabética. ¿Por cada persona que vaya a votar empezarı́as a fijarte si es el primero de la lista,
si no lo es fijarte si es el segundo de la lista, y ası́ hasta encontrarlo en la posición 861?7 Hoy
en dı́a con la digitalidad se perdieron los ı́ndices, pero hasta hace algunas décadas en todas
las viviendas habı́a guı́as telefónicas con los nombres y teléfonos de todos los abonados, o
diccionarios y enciclopedias con todas las palabras del idioma ordenadas. Nadie empezarı́a a
buscar por el comienzo para encontrar un Rodrı́guez.

La mejor forma de encontrar algo es poder descartar rápidamente dónde no lo voy a
encontrar. Volviendo al ejemplo del padrón, ¿qué pasa si lo abro exactamente en el medio y
me fijo qué elector es el que está ahı́? Si justo se da la chance en mil de que sea justo el que
está viniendo a votar el problema se terminó, pero lo más probable es que no sea ese el caso.
¿Comparar el nombre de la mitad del padrón con el elector que quiero buscar me da alguna
información adicional?

Bueno, si el padrón está ordenado alfabéticamente mirar el elector del medio me indica
inmediatamente si me pasé o si todavı́a no llegué. Esta sencilla pregunta descarta la mitad
exacta del padrón. Si ya me pasé, mi elector tiene que estar en la primera mitad, si todavı́a
no llegué tiene que estar en la segunda mitad. ¿Y cómo continúo?, sencillamente puedo hacer
lo mismo con la mitad restante, y la mitad de la mitad y la mitad de la mitad hasta que o
encuentre a mi elector o me quede sin padrón para partir al medio y no lo haya encontrado.

El algoritmo será algo ası́ como:

1 /* Busca el elemento en un vector de n elementos ordenados.
2 Devuelve la posici ón del elemento o n de no encontrarlo. */
3 size_t busqueda_binaria(int vector[], size_t n, int elemento) {
4 size_t prim = 0;
5 size_t ult = n - 1;
6 while(prim <= ult) {
7 size_t medio = (prim + ult) / 2;
8

9 if(vector[medio] == elemento)
10 return medio;
11 if(vector[medio] > elemento)
12 ult = medio - 1;
13 else
14 prim = medio + 1;
15 }
16

17 return n;
18 }

La porción del vector que debemos mirar es la que está entre prim y ult. Ahora bien, sólo
miramos el elemento que está en el medio entre los dos, y en base a eso reajustamos la porción
según qué encontremos.

Es importante notar que la documentación ahora dice “vector de n elementos ordenados”, eso
está imponiendo una precondición muy fuerte: El vector sı́ o sı́ tiene que estar ordenado. Si no
el algoritmo no funcionarı́a.

¿Y cuántas operaciones realiza nuestro algoritmo? Sabemos que en cada paso se descarta la
mitad de los elementos, ¿y cuántas veces itera entonces?

7No se trata de tener empatı́a con la computadora, pero a veces ponerse en el lugar de lo que pretendemos que
resuelva nuestro algoritmo y pensar qué harı́amos nosotros si realmente tuviéramos que hacer todas esas operaciones
es un buen camino para encontrar mejores soluciones.
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Para realizar las cuentas de forma sencilla vamos a suponer que n = 2k, es decir que no
tenemos una cantidad arbitraria de elementos sino, convenientemente, una potencia de 2. Esto
nos va a permitir simplificar las cuentas y vamos a llegar a un resultado que es válido también
cuando esto no se cumpla.

Si hacemos esa asunción en el paso 0 de nuestro algoritmo tenemos 2k elementos. Si
descartamos la mitad en cada paso en el paso 1 del algoritmo tendremos 2k

2 = 2k−1.8 En el paso
2 tendremos entonces 2k−2 elementos y ası́ seguiremos hasta el paso k. En el paso k tendremos
2k−k = 20 = 1 elementos, es decir, habremos partido tantas veces al medio nuestro vector que lo
agotamos. Nuestro algoritmo entonces realiza k pasos, pero sabemos que n = 2k =⇒ k = log2 n.

Entonces podemos concluir que nuestro algoritmo es O(log n),9 es decir, es logarı́tmico con
respecto al tamaño de la entrada.

¿Esto es bueno? Supongamos que tenemos un padrón no de 1000 electores si no de los 50
millones de argentinos: log2(50000000) ≈ 26, en apenas 26 iteraciones puedo saber si alguien
está o no en el padrón.10

17.3.1. bsearch()

Similar a la función qsort() que presentamos en la sección 8.11.1 la biblioteca provee una
implementación genérica de la búsqueda binaria

1 void *bsearch(const void *key , const void *base , size_t nmemb ,
↪→ size_t size , int (* compar)(const void *, const void *);

donde los parámetros son los mismos que en qsort() y se suma key, la clave que buscamos. La
función devuelve un puntero a la ocurrencia del elemento en el vector o NULL de no encontrarlo.

17.4. Lectura del vector

Empezamos la sección hablando del algoritmo de lectura del vector que resultó cuadrático.
¿Podemos mejorarlo? Sı́, podemos mejorarlo.

Supongamos el código

1 /* Lee enteros de stdin hasta agotar la entrada , devuelve el
2 vector de enteros le ı́dos por el nombre y la cantidad de enteros
3 a trav és de n. */
4 int *leer_enteros(size_t *n) {
5 int *v = malloc (1 * sizeof(int));
6 if(v == NULL) return NULL;
7

8 size_t memoria_pedida = 1;
9 size_t i = 0;

10

11 char buffer [100];
12 while(fgets(buffer , 100, stdin) != NULL) {
13 if(i == memoria_pedida) {

8Otra vez ±1, porque nuestro algoritmo descarta el elemento del medio, pero no cambia el resultado.
9Omitimos la base del logaritmo porque un cambio de base es multiplicar por una constante y en notación O no nos

importan las constantes.
10Más aún, si estamos asumiendo que nuestra computadora tiene punteros de 64 bits, significa que no puede haber

nunca un vector de más de 264 elementos, entonces si pudiéramos tener una computadora con 18 exabytes (264 bytes)
de memoria RAM y el mayor vector posible que podrı́amos cargar ahı́ la búsqueda binaria aún no iterarı́a más de 64
veces.
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14 int *aux = realloc(v, 2 * memoria_pedida * sizeof(int)
↪→ );

15 if(aux == NULL) {
16 free(v);
17 return NULL;
18 }
19 v = aux;
20 memoria_pedida *= 2;
21 }
22 v[i++] = atoi(buffer);
23 }
24

25 *n = i;
26 return v;

empezamos pidiendo un memoria de un tamaño arbitrario pequeño, 1. Ahora ya no pedimos
memoria en todas las iteraciones, ahora pedimos memoria sólo cuando agotamos la cantidad
que ya pedimos. El quid del algoritmo está en cuánta memoria adicional pedimos cuando
nos quedamos sin memoria. Si pidiéramos una suma fija adicional cada vez pediremos esa
suma veces memoria pero al analizar la complejidad esto no cambiará el orden. Ahora bien, en
nuestra solución estamos haciendo crecer la memoria de forma exponencial11. Intuitivamente,
si cada vez pedimos el doble de memoria, vamos a converger rápidamente al valor de n.

¿Cuántas veces pedimos memoria en nuestro algoritmo? La primera vez pedimos 1, la
segunda 2, tercera 4, 8, 16 y ası́ hasta superar n. Si miráramos esta serie al revés verı́amos que,
otra vez, la cantidad de pedidos está relacionada con cuántas veces podemos dividir n por
dos, es decir, tenemos una cantidad logarı́tmica de veces que pedimos memoria. Esta es una
reducción muy importante con respecto a pedir de forma lineal.

La cantidad de memoria movida por realloc() entonces será la sumatoria de cada uno de
los tamaños de redimensión ∑k

i=1 2i = 2(2k − 1), donde k es la cantidad de pasos log2 n por lo
tanto el resultado es 2(n− 1). Es decir, termina siendo O(n). El algoritmo es lineal en cantidad
de operaciones.

En cuanto a memoria podrı́a pasar que justo después de redimensionar se alcance el tamaño
de la entrada y entonces estemos ocupando el doble de memoria de lo necesario. Si bien estamos
descartanto constantes, no deja de ser el doble que el algoritmo anterior.

Podemos emparchar nuestro algoritmo reemplazando la lı́nea del return v; por

1 int *aux = realloc(v, *n * sizeof(int));
2 if(aux == NULL)
3 // No vamos a descartar todo si ya hab ı́amos podido leer.
4 return v;
5 return aux;

redimensionando al tamaño final.
Notar también que ası́ como en el algoritmo cuadrático necesitábamos momentaneamente

el doble de la memoria para hacer el realloc() acá necesitamos el triple cuando tengamos un
vector de n y pidamos 2n.

Si en vez de tomar 2 como factor de crecimiento tomamos un número menor el derroche de
memoria se reduce sin afectar el orden de complejidad que seguirá siendo lineal.

11El factor es 2, la duplicamos, pero obtendrı́amos el mismo resultado si usáramos un número más conservador.
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Capı́tulo 18

Contenedores

18.1. Concepto

En el capı́tulo 13 presentamos a los tipos de datos abstractos, donde delegamos en un tipo
encapsulado la implementación de determinadas funcionalidades. Dentro de los TDAs que
podemos implementar para estructurar nuestros programas hay un conjunto que representan
una categorı́a en sı́ mismo: Los contenedores.

Llamamos contenedor a los TDAs que sirven para almacenar objetos y recuperarlos después.
Por ejemplo, en el caso más sencillo de tipos (concretos) que ya manejamos un arreglo de enteros
permite almacenar objetos de tipo entero en una determinada posición y luego recuperar ese
valor entero más tarde.

En el caso de TDAs la idea es que Alan provea toda la infraestructura necesaria para
almacenar los objetos que Bárbara necesite guardar. Volviendo al ejemplo anterior, tal vez
Bárbara quiere guardar enteros en un arreglo, pero a su vez necesita que ese arreglo sea
dinámico, que al crecer lo haga de forma eficiente (ver la sección 17.4), o que los elementos
se inserten de forma ordenada y que por lo tanto se puedan encontrar de forma eficiente (ver
la sección 17.3), etc. Tal vez ya le estamos pidiendo tanto al vector que queramos en realidad
implementar un TDA que gestione todas esas operaciones. Desde el punto de vista de Bárbara
sólo nos interesará al TDA pedirle que almacene determinado valor y que nos lo devuelva si lo
necesitamos o nos permita consultar si el mismo está o no en la instancia del TDA.

Notar que en el ejemplo anterior Alan implementa un TDA vector dinámico de enteros.
Es decir, si bien Alan implementa primitivas de forma opaca para que después Bárbara las
consuma, Alan conoce perfectamente los elementos que Bárbara va a almacenar: enteros.
Cuando tenemos ese caso hablamos de un contenedor para determinado tipo.

Ahora bien sabemos que la idea de Alan y Bárbara como dos personajes que interactúan
entre sı́ es un cuentito que nos contamos. En la vida real tal vez Alan implementó una biblioteca
años antes y a Bárbara le resulta útil y la utiliza sin pedirle ninguna funcionalidad a Alan. Ahora
bien, ¿qué pasa si Bárbara en vez de necesitar almacenar un tipo conocido como un entero
necesitara almacenar un tipo particular como por ejemplo un TDA cualquiera? Si queremos que
realmente Alan pueda implementar contenedores que sirvan a futuro, tendremos que proveer
algún mecanismo para que Alan pueda gestionar los objetos que Bárbara necesita guardar sin
conocer el tipo de esos objetos. En ese caso hablaremos de un contenedor genérico.

18.2. Listas

Empezaremos presentando una interfaz sencilla, la de un tipo que llamaremos “lista”.
Esta lista tendrá las siguientes primitivas:
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crear vacia() → L: Creará una instancia de la lista y nos la devolverá como un objeto L.

asignar(L, i, x): En la posición i de L guarda el valor x.

obtener(L, i) → x: Nos devuelve x, el valor que estaba en la posición i de L.

agregar al final(L, x): Inserta el valor x al final de la lista L.

insertar(L, i, x): Inserta el valor x en la posición i de L. Ahora bien, todos los elementos
que estaban de esa posición en adelante se tienen que desplazar una posición a la derecha,
estamos insertando un valor, no asignando como en una de las primitivas anteriores.

eliminar(L, i): Elimina el valor i de la lista L. Ahora bien, no puede quedar un agujero en la
lista, por lo que todos los elementos posteriores a i tienen que desplazarse una posición a
la izquierda.

Si bien podemos agregarle otras primitivas a nuestra lista, como por ejemplo, que nos diga si
la misma está vacı́a, o cuál es su longitud, o si un elemento se encuentra o no, etc. de momento
empezaremos con esta interfaz.

Si bien Alan tiene libertad de acción en cómo implementar esta interfaz serı́a deseable
que todas las operaciones de la misma se pudieran resolver en tiempo constante, es decir,
en O(1). Tal vez esto se pueda, o tal vez no, y tal vez para Bárbara sea más importante que
determinada operación sea eficiente y otras no tanto, dependiendo de qué necesita en su
aplicación, y esta relación de compromiso entre qué puede ofrecer Alan y qué necesita Bárbara
va a motivar que haya muchas maneras difentes de implementar esta interfaz. Incluso puede
haber immplementaciones particulares donde alguna de estas operaciones diréctamente no
tengan sentido y se omitan.

18.3. Implementación con un arreglo dinámico

Si quisiéramos implementar la lista de enteros una propuesta válida podrı́a ser:

1 struct lista_enteros {
2 int *v; // El vector de n enteros
3 size_t n; // La cantidad de elementos del vector
4 // Invariante: Si n == 0 <==> v == NULL
5 };

No vamos a implementar las primitivas pero deberı́amos poder ver que la primitiva
crear_vacia() deberı́a poder resolverse en tiempo constante O(1). Lo mismo corre para
las primitivas asignar() y obtener(), en ambos casos pueden resolverse accediendo a un
elemento de un vector, lo cual no deja de ser una suma y desreferenciación de punteros (eso sı́,
primero validemos que el ı́ndice provisto sea válido).

¿Qué pasa con agregar_al_final()? Si la lista antes de agregar un elemento tiene una
determinada cantidad de elementos, luego de agregarlo tendrá un elemento más. En la repre-
sentación interna que elegimos v tiene exactamente n elementos, por lo que estamos obligados
a hacer un realloc() lo cual implica hacer una copia de los elementos previos del vector a
memoria nueva. Nuestra implementación va a forzar que esta primitiva se ejecute en O(n).

¿Esta es la única implmenetación posible? No, por ejemplo, podrı́amos implementar el tipo
de esta forma:

1 struct lista_enteros {
2 int *v; // El vector de n enteros.
3 size_t n; // La cantidad de elementos ocupados en el

↪→ vector.
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4 size_t pedidos; // La cantidad de memoria pedida en v.
5 /* Invariantes:
6 n <= pedidos
7 pedidos > 0
8 */
9 }

Con una implementación como esta podemos disociar el pedido de memoria de la necesidad
de agrandar la cantidad de elementos del vector. Por ejemplo, si iniciáramos pidiendo memoria
para 100 elementos en el constructor, las primeras 100 veces que Bárbara inserte un elemento
nuevo al final ya tendrı́amos resuelta la memoria. Recién cuando Bárbara inserte el elemento
101 pagaremos una penalidad por la redimensión de memoria.

Siendo que Alan generalmente precede a Bárbara, lo más probable es que no tenga ninguna
idea de si Bárbara va a insertar pocos o muchos elementos en su lista. En el capı́tulo previo
hablamos largo y tendido de las diferentes estrategias para leer un vector de longitud desco-
nocida. La estrategia que Alan implemente cuando n == pedidos va a incidir en el orden de
complejidad de agregar_al_final().

En este curso no tenemos las herramientas matemáticas para fundamentar lo que vamos
a enunciar, pero lo que concluı́mos en el capı́tulo anterior de crecer la memoria de forma
exponencial puede extrapolarse a este caso. Podemos decir que si Alan hace crecer a pedidos
de forma exponencial cada vez que se quede sin espacio entonces Bárbara podrá agregar n
elementos en tiempo O(n). Hasta acá no dijimos nada no fundamentado, demostramos esta
afirmación en el capı́tulo anterior. Ahora bien, si Bárbara puede agregar n elementos en tiempo
O(n) entonces podemos decir que agregar un elemento lo hace en O(1). Esta última afirmación
deberı́a hacerte ruido.

Si volvemos a la idea de que Alan arranca pidiendo memoria para 100 elementos está
claro que las primeras 100 inserciones de Bárbara se dan en O(1). Ahora bien, la siguiente
inserción tiene que hacer un realloc() sobre un vector de tamaño 100, por lo tanto será O(n).
Si duplicamos memoria1 entonces por 100 inserciones más no haremos nada y a la vez 200
tendremos que hacer una redimensión que costará 200, pero por 200 inserciones no pagaremos
costo y ası́. Bien, en esta sucesión de muchas veces O(1) y pocas veces O(n) donde las veces
lineales cada vez se espacı́an más en el tiempo se puede demostrar que cada inserción es de
tiempo amortizado O(1).

¿Qué significa lo de amortizado?, que si miramos desde afuera podemos decir que en
promedio todo es O(1), incluso cuando sabemos que cada una determinada cantidad de
pedidos Bárbara va a disparar un pedido de redimensión que lleva tiempo lineal. El concepto
de amortización viene de la Economı́a, podrı́amos decir que cada una de las primeras 100 veces
que Bárbara inserta está ahorrando a futuro para pagar todo junto en la centésima inserción. Esa
centésima inserción le cobra por lo que no pagó en las 100 anteriores. No vamos a profundizar
en el tema, podrı́amos habernos quedado con la cuenta inicial que hicimos, si n inserciones
llevan tiempo lineal, entonces una sola lleva tiempo constante; de hecho intuitivamente deberı́a
verse eso, pero es más complejo y en realidad se dice que lleva tiempo amortizado a constante.

Retomando toda esta disgresión, entonces también la primitiva de agregar_al_final()
puede implementarse en O(1) (amortizado).

Si abordamos las dos primitivas restantes, insertar() y eliminar(), veremos que no hay
manera de implementarlas mejor que O(n) con nuestra implementación. El acto de insertar o
eliminar en vector implica desplazar una posición todos los elementos restantes del vector. Es
decir, tendremos que recorrer los elementos, eso será siempre lineal.

Entonces, resumiendo, con nuestro TDA lista implementado sobre un arreglo podemos
obtener complejidades O(1) para todas las primitivas salvo insertar() y eliminar() que

1Recordemos que podemos tener crecimiento exponencial multiplicando por otro número que no sea 2, pero 2 nos
queda cómodo para hacer las cuentas.

133
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serán O(n).

18.4. Lista genérica

Si tenemos la implementación de la lista de enteros que hicimos en la subsección anterior
podemos reemplazar int por cualquier tipo de preferencia y tendremos una lista que funciona
para cualquier tipo de datos. Ahora bien, si necesitamos la lista para múltiples tipos de datos
tendremos que tener muchas versiones que son, básicamente, el mismo código copiado y
pegado, y además, necesitamos tener el código fuente disponible para hacer ese cambio.

Como dijimos al comienzo del capı́tulo, muchas veces queremos que Alan sea capaz de
implementar un contenedor que sea agnóstico al tipo de datos que Bárbara va a guardar en él.

Cada lenguaje tiene sus propuestas para poder desacoplar el contenedor del tipo que se
guarda en él y en C lo más usual es hacer contenedores que almacenen elementos de tipo
void *. Como ya sabemos, el tipo void * permite guardar cualquier tipo de puntero, y nada
más que punteros, por lo que la propuesta para implementar contenedores genéricos implica
que Bárbara debe guardar en él punteros, o sea, nuestro contenedor genérico no servirá para
guardar enteros y flotantes sino tipos más complejos.

Si bien no se señaló de forma explı́cita cuando explicamos TDAs (capı́tulo 13) y modulari-
zación (capı́tulo 14) fue evidente de que ambas cosas funcionan instanciando los objetos del
tipo en el heap. Es decir, es natural manejar a los TDAs a través de punteros, incluso llegando
al punto de que Bárbara desconoce qué hay almacenado en la memoria que apunta. Entonces,
si bien plantear los contenedores genéricos como receptores de punteros a void nos limita el
almacenamiento de tipos básicos2, es un tipo razonable porque nos permite almacenar cualquier
TDA que construyamos.

Entonces nuestra lista genérica podrı́a implementarse

1 struct lista {
2 void **v;
3 size_t n, pedidos;
4 }

con el mismo diseño que explicamos en la subsección anterior y donde v ahora es un arreglo
dinámico de void *.

En principio si tenemos implementada la lista con enteros podemos reemplazar las ocurren-
cias de int por void * (donde sea necesario) y tenemos implementada nuestra lista genérica.
Ahora bien van a surgir detalles que en la implementación de enteros no tenı́a sentido conside-
rar.

Independientemente de las primitivas que nos interesaban para la lista, sabemos que todo
TDA tiene un destructor. Veamos el código del destructor de la lista de enteros:

1 void lista_enteros_destruir(lista_enteros_t *l) {
2 free(l->v); // Libero la memoria de los elementos.
3 free(l); // Libero la memoria de la estructura.
4 }

El TDA, como corresponde libera su memoria asociada. Tanto el vector l->v como la estructura
l es memoria pedida y gestionada por Alan. El vector contiene todos los valores que Bárbara
almacenó. Bárbara dijo “almacená un 5 en la posición 3” y Alan almacenó ese 5. Liberar la
memoria asociada al vector elimina esa copia del 5 en la memoria gestionada por Alan.

Si vamos al caso genérico:

2Si realmente quisiéramos guardar enteros podrı́amos poner esos enteros en el heap y almacenar int *, llegado el
caso.
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1 void lista_destruir(lista_t *l) {
2 free(l->v);
3 free(l);
4 }

si l->v contiene a los elementos de Bárbara y esos elementos son punteros liberar el vector
no libera la memoria asociada a esos elementos, solamente libera el vector en el cual Alan
guardaba esas referencias.

Ahora bien, ¿cómo liberamos esos elementos?, podrı́amos pensar que llamar a free() para
cada uno de ellos sea una buena idea, pero, ¿realmente los objetos de Bárbara se liberan de este
modo? Podemos tomarnos un segundo para mirar nuestro propio destructor, ni siquiera las
listas se destruyen con un único free().

Supongamos que sepamos como se liberan los elementos, ¿Bárbara quiere liberarlos al
destruir el vector? Por ejemplo, Bárbara tiene una lista con todos los alumnos del curso. De
forma temporal se arma una lista con los alumnos que aprobaron el primer parcial. Bárbara
ahora tiene dos listas donde los objetos de una son un subconjunto de los objetos de la otra. Si
elimina la lista de alumnos que aprobaron el primer parcial, ¿quiere perder esos alumnos de su
curso? Veamos que incluso aunque Alan supiera cómo lidiar con la memoria de Bárbara no
puede él decidir si destruye los objetos o no.

La conclusión de los últimos dos párrafos es que sólo Bárbara sabe cómo liberar sus objetos
y si desea hacerlo. Esa no es responsabilidad de Alan, Alan sólo los almacena, pero no se
preocupa de su contenido.

¿Cómo hacemos entonces? Una solución serı́a exigirle a Bárbara que antes de destruir la lista
se preocupe por eliminar sus elementos, si es que hace falta. Esta solución si bien tiene sentido
por lo que ya discutimos es incómoda. La otra solución serı́a que Bárbara le indique a Alan qué
hacer con los elementos, sin que por eso Alan tenga que conocerlos. La forma de delegar este
tipo de cosas en C es mediante punteros a funciones. Bárbara le va a pasar a Alan el puntero a
una función que sepa qué hacer con la memoria de los datos. Esa función pertenece al universo
de Bárbara, por lo que va a conocer cómo lidiar con ellos. Alan se va a limitar simplemente a
llamarla para cada uno de los elementos almacenados:

1 void lista_destruir(lista_t *l, void (* destruir_elemento)(void *))
↪→ {

2 if(destruir_elemento != NULL)
3 for(size_t i = 0; i < l->n; i++)
4 destruir_elemento(l->v[i]);
5

6 free(l->v);
7 free(l);
8 }

La firma del destructor de elementos es void f(void *) recibe un elemento de tipo void * y
lo destruye, los destructores nunca devuelven nada dado que en C no hay forma de recuperarse
si hubiera un error de memoria. Notar que si Bárbara no quisiera eliminar los elementos de
la memoria (porque ya los tiene en otro lado, porque son estáticos, etc.) puede invocar al
destructor pasando NULL como función de destrucción, esto le ahorrarı́a a Bárbara tener que
construirse una función que no haga nada si quisiera omitir la iberación de los elementos.

Del lado de Bárbara, por ejemplo:

1 void liberar_cadena(void *s) {
2 // s es una cadena
3 free(s);
4 }
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5

6 int main() {
7 lista_t *cadenas = lista_crear_vacia (); // Validar!
8

9 char aux[MAX_CADENA ];
10 while(fgets(aux , MAX_CADENA , stdin) != NULL) {
11 char *cadena = malloc(strlen(aux) + 1); // Validar!
12 strcpy(cadena , aux);
13 lista_agregar_al_final(cadenas , cadena); // Validar!
14 }
15

16 // ...
17

18 lista_destruir(cadenas , liberar_cadena);
19

20 return 0;
21 }

En primer lugar si la lista es genérica ¿cómo sabe Bárbara qué elementos tiene? Bueno, esto
es sencillo, lo que es genérico es la implementación de Alan. Para Bárbara la lista no es genérica,
es una lista de cadenas. ¿Por qué es de cadenas? Sencillamente porque Bárbara guardó cadenas.
No importa la implementación de Alan, si Bárbara guarda elementos de diferente tipo adentro
de un contenedor lo que va a guardar van a ser punteros, cuando recupere los elementos va a
recuperar punteros y es imposible dada una dirección de memoria saber a qué tipo de elemento
pertenece esa memoria. Si Bárbara necesita una lista para guardar cadenas guardará cadenas y
recuperará cadenas. En el ejemplo incluso la variable donde almacena la lista se llama cadenas.

Si la lista es de cadenas, cada elemento de la misma es una cadena y entonces debe liberarse
con la función liberar_cadenas(). Notar que Bárbara tiene un char *, se lo pasa a Alan en la
llamada a lista_agregar_al_final() que lo recibe como un void * y ası́ lo almacena, pero
cuando invoca a liberar_cadena() esta función sabe que ese void * que recibió es en realidad
un char * y puede gestionarlo de ese modo.

La realidad es que siendo que liberar_cadena() se limita a llamar a free() y tiene la
misma firma que free(), tranquilamente Bárbara podrı́a haber invocado lista_destruir(
↪→ cadenas, free) y hubiera sido lo mismo.3

18.5. Buscar un elemento

Supongamos que Bárbara quiere saber si un elemento se encuentra o no dentro de la lista y
recuperarlo.

Si la interfaz fuera:

1 void *lista_buscar(const lista_t *l, void *elem) {
2 for(size_t i = 0; i < l->n; i++)
3 if(l->v[i] == elem)
4 return elem;
5 return NULL;
6 }

¿estarı́amos realmente buscando?

3Y si la firma no fuera la misma consultar lo que ya se discutió sobre wrappers en la sección 8.11.1.
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Pensemos un segundo el último ejemplo de la lista con cadenas. Imaginemos que el usuario
ingresó por stdin un listado de nombres y queremos saber si un determinado nombre está o
no

1 if(lista_buscar(cadenas , "Juan\n") != NULL) // Est á

Esta función nunca va a encontrar a la cadena, porque la cadena "Juan\n" vive en data mientras
que las cadenas de la lista viven en el heap y estamos comparando punteros y no contenido.
A estas alturas sabemos que para comparar cadenas tenemos que hacerlo por caracteres (o
llamando a strcmp()).

Entonces, como Alan desconoce el tipo de los datos, es Bárbara quien tiene que proveer la
función de comparación.

En la sección 8.11.1 ya vimos que las funciones de comparación en C tienen una interfaz
estándar: Reciben los dos elementos y devueven un entero, si ese entero vale 0 es porque los
dos elementos son iguales. Si es negativo es porque el primer elemento es menor al segundo y
positivo en caso contrario (sı́, para sorpresa de nadie exactamente la interfaz de strcmp()).

Entonces Bárbara debe proveer la función de búsqueda

1 void *lista_buscar(const lista_t *l, void *elem , int (* comparar)(
↪→ const void *, const void *)) {

2 for(size_t i = 0; i < l->n; i++)
3 if(comparar(l->v[i], elem) == 0)
4 return l->v[i];
5 return NULL;
6 }

Más allá de la función de búsqueda notar que cambiamos la devolución. En la primera
implementación devolvı́amos elem en la segunda devolvemos l->v[i]. ¿Es indistinto devolver
uno o el otro? ¿Si elem es el elemento que buscamos, en qué se diferencia de l->v[i]?

Acá tenemos que pensar que el elemento que Bárbara está buscando es el de la lista.
El elemento que pasa como parámetro a la función es solo algo que sirve para disparar la
igualdad en la búsqueda. Ejemplifiquemos, imaginemos que Bárbara tiene una estructura
alumno definida como:

1 struct alumno {
2 int padron;
3 char nombre[MAX_CADENA ];
4 char apellido[MAX_CADENA ];
5 enum carrera carrera;
6 // ... y un mont ón de cosas más
7 };

y generó una lista alumnos que contiene a todos los alumnos de la facultad.
Luego en nuestro ejemplo Bárbara quiere recuperar la información del alumno con padrón

100000. Entonces puede hacer algo ası́:

1 int comparar_por_padron(const void *a, const void *b) {
2 const struct alumno *aa = a;
3 const struct alumno *ab = b;
4 return aa->padron - ab->padron;
5 }
6

7 // ...
8 struct alumno busqueda = {. padron = 100000};
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9 struct alumno *encontrado = lista_buscar(alumnos , &busqueda ,
↪→ comparar_por_padron);

El alumno con el que Bárbara busca es apenas una cáscara vacı́a que contiene un padrón, el
alumno que Bárbara tiene en la lista, y quiere recuperar tiene toda la información completa.
Por esto no es indistinto devolver elem o l->v[i], el elemento proporcionado no tiene ningún
valor más que servir para encontrar al elemento real.

18.6. Interfaz de lista

Omitiendo la búsqueda una posible interfaz para la lista genérica podrı́a ser la siguiente:

1 lista_t *lista_crear_vacia ();
2 void lista_destruir(lista_t *l, void (* destruir_elemento)(void *))

↪→ ;
3

4 bool lista_asignar(lista_t *l, size_t i, void *x);
5 void *lista_obtener(const lista_t *l, size_t i);
6 size_t lista_longitud(const lista_t *l);
7

8 bool lista_agregar_al_final(lista_t *l, void *x);
9 bool lista_insertar(lista_t *l, size_t i, void *x);

10 void *lista_eliminar(lista_t *l, size_t i);

Notar que todas las primitivas que pueden fallar devuelven bool, devolverán true en caso de
poder realizar la acción y false en caso contrario. La primitiva lista_eliminar() retira de la
lista el elemento en la posición i y lo devuelve. ¿Por qué lo devuelve?, porque si tuviera que
removerlo de la lista y no lo devolviera tendrı́a que eliminarlo y otra vez necesitarı́amos que
Bárbara nos dijera cómo hacerlo. Es más sencillo devolverle el elemento a Bárbara y que ella se
responsabilice por su memoria.

Se agregó además una primitiva para obtener la longitud n de la lista.
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Capı́tulo 19

Listas enlazadas

19.1. La lista enlazada

La lista enlazada es un contenedor donde cada uno de los datos se almacena dentro de un
nodo. A su vez cada uno de los nodos tiene una referencia al nodo siguiente de la lista, como si
se tratara de los vagones de un tren.

Por ejemplo, para una lista enlazada de enteros podrı́amos definir el nodo de la siguiente
forma:

1 struct nodo {
2 int dato; // El dato que vamos a almacenar
3 struct nodo *sig; // La referencia al nodo siguiente
4 };

Por ejemplo, si tuviéramos los nodos:

1 struct nodo a = {1, NULL};
2 struct nodo b = {2, NULL};
3 struct nodo c = {3, NULL};

podrı́amos engancharlos de este modo:

1 a.sig = &b;
2 b.sig = &c;

y si miramos la lista a partir de a verı́amos que la misma es una sucesión de 3 nodos con los
datos 1, 2, 3 en ese orden.

Volviendo a la declaración de la estructura, en el lenguaje de programación C no puede
anidarse una estructura dentro de sı́ misma, porque harı́a falta memoria infinita para eso,
pero es perfectamente válido incluir dentro de una estructura una referencia a sı́ misma. Esta
referencia, al ser un puntero, tiene un tamaño acotado por el tamaño de los punteros en la
plataforma.

Volviendo a la definición de la lista, si cada nodo contiene una referencia a un siguiente
nodo y este a su vez contiene una referencia al siguiente, estarı́amos ante una sucesión que no
termina más. Ampliando entonces en una lista los nodos contienen una referencia al siguiente
nodo si es que existe, y una referencia nula en caso de que no haya ningún nodo a continuación.

Notar que ası́ como el nodo a define una lista con los elementos 1, 2 y 3, el nodo b también
define una lista con los elementos 2 y 3, y que esto es válido para cualquier nodo. La lista tiene
una estructura recursiva definida en términos de sı́ misma.

Más allá de que el código anterior sirve de ejemplo para entender cómo se vinculan varios
nodos entre sı́, si queremos tener una cantidad indefinida de nodos no vamos a tener variables
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para cada uno de ellos. Tiene sentido que los nodos vivan en el heap y referenciarlos desde el
primer nodo que representa la lista:

1 struct nodo *crear_nodo(int dato , struct nodo *sig) {
2 struct nodo *n = malloc(sizeof(struct nodo));
3 if(n == NULL) return NULL;
4

5 n->dato = dato;
6 n->sig = sig;
7

8 return n;
9 }

10

11 // ...
12

13 struct nodo *primero = crear_nodo (1, NULL);
14 primero ->sig = crear_nodo (2, NULL);
15 primero ->sig ->sig = crear_nodo (3, NULL);

Genera la misma lista que habı́amos generado en el ejemplo anterior. Si estás pensando que la
expresión primero->sig->sig es poco elegante, estás pensando bien. No sólo es una expresión
fea, además si quisiéramos insertar 10 nodos en la lista no pararı́amos de agregar ->sig a la
misma.

Por como se estructuran las listas, es mucho más sencillo agregar los nodos al principio que
al final como hicimos en los dos ejemplos previos. Podrı́amos hacer:

1 struct nodo *aux = crear_nodo (3, NULL);
2 aux = crear_nodo (2, aux);
3 aux = crear_nodo (1, aux);
4 struct nodo *primero = aux;

y tendrı́amos exactamente la misma lista que antes. Este es un código que podrı́amos repetir
tantas veces como queramos de forma iterativa.

Como dijimos en la introducción, la lista enlazada es un contenedor cuya unidad de
almacenamiento es el nodo, donde cada nodo contiene un dato y una referencia al siguiente
nodo. Esta definición es la definición matemática abstracta de la estructura de datos.

19.2. Implementación como TDA

Ahora bien, yendo a la implementación, si Alan quisiera encapsular la lista enlazada como
un TDA en C se va a encontrar que definir a la lista en función de su primer nodo, como
hicimos en los ejemplos hasta el momento, va a implicar que cualquier operación que modifique
el primer nodo (sea insertar o eliminar un elemento) haga que la referencia que Bárbara posee
tenga que cambiar. Si bien es posible hacer una implementación donde Bárbara tenga una
referencia al primer nodo, la misma requiere que Alan reciba punteros al puntero al nodo (o
sea, dobles punteros) para poder modificar esta referencia, o que una lista vacı́a, es decir que
no tiene datos, tampoco deberı́a tener nodos por lo que se representarı́a como un NULL.

Para implementar la lista enlazada como un TDA, nos va a quedar mucho más cómodo si
Alan le presenta a Bárbara una estructura que funcione como un wrapper del primer nodo de la
lista:

1 struct lista {
2 struct nodo *prim; // Primer nodo de la lista

140



NOTAS DE TA130 SEBASTIÁN SANTISI

3 };
4

5 typedef struct lista lista_t;

Este tipo lista_t será la cara visible de la lista enlazada ante Bárbara. Los nodos serán un
detalle de implementación que sólo conocerá Alan. No perdamos de vista que lo único que le
interesa a Bárbara son sus datos, esa es la idea de contenedor. El resto es problema de Alan.

Y sı́, a partir de ahora vamos a llamar “lista” a la lista enlazada, no confundir con la interfaz
genérica de lista que presentamos en el capı́tulo anterior. Si en algún momento necesitáramos
referirnos a la lista genérica lo aclararı́amos, por omisión cuando hablemos de listas serán listas
enlazadas.

Teniendo esa representación interna el constructor de la lista queda:

1 lista_t *lista_crear () {
2 lista_t *l = malloc(sizeof(lista_t));
3 if(l == NULL) return NULL;
4

5 l->prim = NULL;
6

7 return l;
8 }

Notar que de esta forma la estructura lista_t permite que el primer elemento de la lista mute
sin por eso modificar la referencia externa de Bárbara. Del mismo modo, Bárbara tiene una
referencia no nula incluso cuando la lista está vacı́a.

Encapsulemos ahora la operación de insertar al comienzo como primitiva:

1 bool lista_insertar_al_principio(lista_t *l, int dato) {
2 struct nodo *n = crear_nodo(dato , l->prim);
3 if(n == NULL) return false;
4

5 l->prim = n;
6

7 return true;
8 }

La función crear_nodo() que ya presentamos será una función auxiliar privada de Alan1.

19.3. Recorrer la lista

A diferencia de los arreglos, donde podemos acceder de forma sencilla a cualquier elemento
con una operación de punteros, en las listas enlazadas no hay manera de acceder a un nodo
que no sea recorriendo de forma transversal la lista desde el comienzo.

Por ejemplo, supongamos que Alan quiera imprimir los datos de la lista2:

1 struct nodo *actual = l->prim;
2 while(actual != NULL) {
3 printf(" %d\n", actual ->dato);
4 actual = actual ->sig;
5 }

1i. e. su declaración estará predecedida por static y sólo aparecerá en el .c (ver la sección 14.5).
2Esto no será una primitiva, pero es un ejemplo sencillo para ver la dinámica.
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Con variaciones esta será la plantilla que utilizaremos para recorrer los elementos de la lista.
En cada paso de la iteración habrá un nodo que será el de interés, utilizaremos para él el
nombre actual. La elección del nombre de la variable nos va a servir para entender mejor el
algoritmo, se recomienda que el nodo con el que trabajaremos se llame ası́ y los demás sean
nombrados relativos a él, es decir anterior, siguiente, etc. Si el nodo actual fuera NULL será
porque alcanzamos el final de la lista y ya no habrá nodos por recorrer. Mientras actual exista
podremos manipular l->dato. El nodo de la siguiente iteración será el siguiente del actual, o
sea actual->sig.

Utiizando esta plantilla podemos implementar el destructor de la lista:

1 void lista_destruir(lista_t *l) {
2 struct nodo *actual = l->prim;
3 while(actual != NULL) {
4 struct nodo *siguiente = actual ->sig;
5 free(actual);
6 actual = siguiente;
7 }
8

9 free(l);
10 }

Hay ocasiones en las que necesitamos recorrer la lista pero no queremos llegar hasta el final
si no, por ejemplo, encontrar el último nodo. Por ejemplo, si quisiéramos insertar un dato nuevo
al final, deberı́amos insertar un nodo luego del último nodo, por lo que tendrı́amos que enlazar
ultimo->sig = nuevo. Este es un caso en el que no nos sirve la plantilla anterior como viene si
no que tendremos que modificarla.

Volviendo al algoritmo si para insertar un nodo al final de la lista necesitamos encontrar el
último nodo de la misma, entonces esa condición tiene una restricción muy fuerte adicional:
Tiene que haber un último nodo, para lo cual tiene que haber nodos. Es decir, no podemos
encontrar el último nodo en una lista vacı́a, dado que una lista vacı́a no tiene ningún nodo.

La plantilla de recorrido que presentamos previamente funciona en cualquier lista. Cuando
empecemos a modificarla tal vez empiecen a aparecer casos particulares que habrá que con-
templar. En el ejemplo que estamos dando, insertar un nodo “al final” de una lista vacı́a es lo
mismo que insertarlo al principio.

Entonces:

1 bool lista_insertar_al_final(lista_t *l, int dato) {
2 struct nodo *nuevo = crear_nodo(dato , NULL); // Estar á al

↪→ final => ->sig = NULL
3 if(nuevo == NULL) return false;
4

5 if(l->prim == NULL) {
6 l->prim = nuevo;
7 return true;
8 }
9

10 struct nodo *actual = l->prim;
11 // Cuando este bucle termine , actual ser á el ú ltimo nodo de la

↪→ lista.
12 while(actual ->sig != NULL)
13 actual = actual ->sig;
14

15 actual ->sig = nuevo;
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16

17 return true;
18 }

¿Qué hubiera pasado si no hubiéramos abordado el caso particular de la lista vacı́a previo a
empezar la iteración? Notar que la condición de corte del while incluye la expresión actual->
↪→ sig, donde en la primera iteración actual es l->prim. O sea la primera vez que iteremos
estaremos evaluando l->prim->sig. Esta expresión sólo tiene sentido si l->prim != NULL
↪→ dado que si no estarı́amos haciendo algo ası́ como NULL->sig lo cual romperı́a nuestro
programa. Entonces si bien el análisis que hicimos previamente nos habı́a indicado que habı́a
un caso particular que abordar si la lista es vacı́a, también deberı́a ser algo evidente analizando
el código. Siempre que tengamos que acceder a miembros de punteros a estructuras tiene
que estar garantizado que dichos punteros no sean nulos. Si podrı́an llegar a serlo entonces
tendremos un caso particular. En el caso de las listas enlazadas los casos particulares siempre
ocurrirán en los extremos mientras que podremos resolver los casos generales con iteraciones
genéricas.

19.4. Eliminando nodos

Como acabamos de decir, generalmente cuando pensamos en listas nos interesan parti-
cularmente los nodos de los extremos o genéricamente el resto de la lista. Es por eso que
implementamos primitivas para insertar al comienzo o al final, y del mismo modo si vamos a
pensar en eliminar nodos nos interesará el primero, el último, o alguno genérico del medio.

Empecemos por el principio:

1 bool lista_eliminar_primero(lista_t *l) {
2 if(l->prim == NULL)
3 return false;
4

5 struct nodo *primero = l->prim;
6 l->prim = primero ->sig;
7

8 free(primero);
9

10 return true;
11 }

Otra vez, sólo podremos eliminar nodos si la lista posee al menos un nodo.
Dejamos como tarea la implementación de la primitiva de eliminar el último.
Implementemos ahora una primitiva que elimine un nodo cualquiera. Lo importante de

observar es que un nodo pertenece a una lista porque el nodo anterior lo referencia. Es decir
para eliminar un nodo de una lista en realidad habrá que modificar el nodo anterior. Y es
importante que cuando tenemos hilos de pensamiento como estos le prestemos atención a estos
detalles, si tenemos que modificar el nodo anterior entonces el algoritmo que estamos pensando
requiere que exista un nodo anterior. Otra vez, eliminar el primer nodo de una lista será un
caso particular: La primitiva que ya implementamos.

Implementemos una primitiva que elimine la primera ocurrencia de un determinado dato:

1 bool lista_eliminar(lista_t *l, int dato) {
2 if(l->prim == NULL) return false;
3

4 if(l->prim ->dato == dato) {
5 struct nodo *a_borrar = l->prim;
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6 l->prim = l->prim ->sig;
7 free(a_borrar);
8 return true;
9 }

10

11 // Ya sabemos que el primer nodo no es el que tenemos que
↪→ borrar.

12 struct nodo *anterior = l->prim;
13

14 while(anterior ->sig != NULL) {
15 struct nodo *actual = anterior ->sig;
16 if(actual ->dato == dato) {
17 // Tenemos que borrar a actual
18 anterior ->sig = actual ->sig;
19 free(actual);
20 return true;
21 }
22 anterior = actual;
23 }
24

25 return false;
26 }

Vamos a insistir por tercera vez en algo, si bien cuando analizamos el anterior no dijimos “la
lista vacı́a es un caso particular” si no que sólo identificamos como caso particular si habı́a que
eliminar el primero, para identificar si hay que borrar el primero tuvimos que comprobar el
valor de l->prim->dato. Lo señalamos porque es importante, si necesitamos acceder al dato
del primer elemento entonces requerimos que haya un primer elemento, entonces que la lista
sea vacı́a es un caso particular. Si bien en este apunte los códigos se ven como algo terminado
la programación es un proceso iterativo donde uno va partiendo de ideas generales y atacando
los detalles. Serı́a perfectamente plausible que si fuéramos a implementar este algoritmo
primero implementemos la iteración que representa el caso genérico. Luego identifiquemos
que esa iteración no puede abordar si el nodo a borrar es el primero de la lista y que luego
identifiquemos que necesitamos que la lista no esté vacı́a. Ese es un hilo de pensamiento más
natural que los ejemplos cerrados que estamos presentando acá. Ahora bien, insistimos con esto
porque un algoritmo que no tome en cuenta todos y cada uno de los casos particulares está mal
y no va a funcionar. Deben ser tenidos en cuenta todos los casos particulares que correspondan
para el problema.

Como es habitual hay múltiples maneras de implementar lo mismo. Podrı́amos demorar la
evaluación del caso particular implementando una iteración sobre el nodo actual en vez del
anterior:

1 bool lista_eliminar(lista_t *l, int dato) {
2 struct nodo *actual = l->prim;
3 sctuct nodo *anterior = NULL;
4

5 while(actual != NULL) {
6 if(actual ->dato == dato) {
7 // Tenemos que borrar a actual
8 if(anterior == NULL)
9 // actual es el primero de la lista

10 l->prim = actual ->sig;
11 else
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12 // actual es un nodo del medio
13 anterior ->sig = actual ->sig;
14

15 free(actual);
16 return true;
17 }
18 actual = actual ->sig;
19 }
20

21 return false;
22 }

Notar como diferentes algoritmos pueden tener diferentes casos particulares para la misma
operación. Lo importante no es que programes la versión más elegante, sencilla o con menos
casos particulares. Lo importante es que para la versión que hayas elegido seas capaz de
identificar esas condiciones de borde que si no abordás la implementación no funcionará.

Se deja como ejercicio implementar la primitiva que borre todas y cada una de las ocurrencias
de un dato3.

Más adelante veremos cómo se pueden eliminar los casos particulares que aparecen en la
manipulación del primer nodo de una lista versus los nodos del medio.

19.5. Listas genéricas

Si bien implementamos previamente el destructor o la eliminación de un dato de la lista
enlazada no perdamos de vista que hasta ahora venimos ejemplificando sobre una lista de
enteros. Si tuviéramos una lista genérica el tipo de datos será void * por lo tanto la declaración
del nodo será:

1 struct nodo {
2 void *dato;
3 struct nodo *sig;
4 }

Todas las primitivas se modificarán en consecuencia, pero nos importa particularmente señalar
las primitivas que manipulan datos.

En los ejemplos anteriores hubo primitivas donde a Alan no le importó el contenido del dato,
por ejemplo, para insertarlo al comienzo o al final. Por el otro lado hubo primitivas donde Alan
sı́ miró el contenido, por ejemplo para eliminar un nodo dado el dato (if(actual->dato ==
↪→ dato). Y, más importante, hubo primitivas donde Alan no hizo nada de forma explı́cita con
el dato pero si los datos hubieran sido void * deberı́a haberles dado un tratamiento particular,
esos son los casos que requieren más atención al ser implı́citos.

Por ejemplo, ya abordamos para el TDA lista no enlazada genérico que para destruir el
TDA en caso de que haya elementos Bárbara tiene que indicar cómo se destruyen. Entonces el
destructor de la lista enlazada genérica deberá ser:

1 void lista_destruir(lista_t *l, void (* destruir_dato)(void *)) {
2 struct nodo *actual = l->prim;
3 while(actual != NULL) {
4 struct nodo *siguiente = actual;
5

3Si vamos a hablar de casos particulares notar que si el dato aparece múltiples veces al comienzo de la lista, después
de eliminarlo por primera vez tal vez volvemos a estar en el mismo caso particular.
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6 if(destruir_dato != NULL)
7 destruir_dato(actual ->dato);
8 free(actual);
9

10 actual = siguiente;
11 }
12

13 free(l);
14 }

En el caso de, por ejemplo, la primitiva de eliminar el primer dato:

1 void *lista_eliminar_primero(lista_t *l) {
2 if(l->prim == NULL)
3 return NULL;
4

5 struct nodo *primero = l->prim;
6 void *dato = primero ->dato;
7

8 l->prim = primero ->sig;
9 free(primero);

10

11 return dato;
12 }

Similar a lo que habı́amos discutido en la lista no enlazada, si bien podemos pedirle a Bárbara
que nos pase una función de destrucción, siendo que estamos ante un único elemento lo más
sencillo es devolvérselo y delegarle el problema a ella.

De forma análoga, en la primitiva de eliminar dado un determinado dato tendremos que
indicar cómo identificar a ese dato:

1 void *lista_eliminar(lista_t *l, const void *dato , int (*
↪→ comparar_dato)(const void *, const void *));

donde la función comparar_dato es una función de comparación como ya vimos en la sec-
ción 18.5. Entonces la identificación de la ocurrencia del dato en el nodo será algo como
if(! comparar_dato(actual->dato, dato)).

Insistiendo con cosas que deberı́an ser evidentes a esta altura del curso: ¿La función anterior
es la que elimina la primera aparición del dato o borra todas? Deberı́as poder razonar la
respuesta.

Por comodidad retomaremos los ejemplos con la lista de enteros y no la lista genérica.

19.6. Casos particulares

Vamos a presentar una técnica para eliminar los casos particulares que tenemos con la
manipulación del primer nodo versus la manipulación de los nodos interiores de la lista. Desde
ya se aclara que esta es una técnica avanzada de punteros y que tal vez simplifique los algoritmos
pero complejiza el entendimiento del código. Se presenta por un lado por completitud y por el
otro porque es una buena aplicación del tema de punteros.

Empecemos identificando por qué ocurre el caso particular. Por ejemplo, en la versión
simplificada de la eliminación del nodo tenı́amos el siguiente código:

1 if(anterior == NULL)
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2 l->prim = actual ->sig;
3 else
4 anterior ->sig = actual ->sig;

Estamor partiendo en dos condiciones pero lo que hacemos en las lı́neas 2 y 4 es prácticamente
idéntico. ¿Qué es lo que cambia?

La diferencia fundamental entre ambas lı́neas es que en la primera estamos modificando
algo de tipo lista_t y en la otra algo de tipo struct nodo. Del mismo modo lista_t tiene un
miembro prim mientras que struct nodo tiene un miembro sig. El hecho de que sean estruc-
turas diferentes con miembros que no coincidan hace que ambos códigos sean irreconciliables y
que sı́ o sı́ haya que abordar el problema como dos casos diferentes desde la implementación.

Ahora bien, si hacemos foco sobre los miembros en cuestión tanto lista_t->prim como
struct nodo->sig son ambos de tipo struct nodo*. Es decir, ambas estructuras son diferentes,
tienen miembros que se llaman distinto, pero en ambos casos lo que modificamos es una
referencia a struct nodo (lo cual deberı́a ser evidente, en ambos casos la asignación es =
↪→ actual->sig, o sea, estamos asignando lo mismo, ergo lo que está a izquierda del igual es
del mismo tipo).

¿Qué pasa si en vez de operar con las estructuras operamos directamente con los miembros?
Es decir apuntamos directamente a prim en el caso de las listas y sig en el caso de los nodos. Si
ambos miembros son de tipo struct nodo * para apuntar a ellos necesitaremos un nivel más
de punteros, pero lo importante es que:

1 struct nodo **p;
2

3 p = &l->prim;
4 p = &actual ->sig;

es un código válido y que el puntero p puede apuntar indistintamente al primero de una lista o
al siguiente de un nodo.

Si lo anterior es válido, entonces es válido también:

1 *p = actual ->sig;

Si p estuviera inicializado con el primero de la lista tendrı́amos *(&l->prim)= actual->sig,
donde * cancela a &, y un reemplazo análoga si fuera un puntero a siguiente de nodo, las mismas
expresiones de las lı́neas 2 y 4 que querı́amos escribir de forma uniforme.

Entonces, para entrar en calor, implementemos la iteración de Alan imprimiendo nodos en
su lista de enteros con dobles punteros:

1 struct nodo **p = &l->prim;
2

3 while (*p != NULL) {
4 struct nodo *actual = *p;
5 printf(" %d\n", actual ->dato);
6 p = &actual ->sig;
7 }

Si bien podrı́amos acceder al dato utilizando (*p)->dato) es más claro si bajamos el nivel de
punteros dentro del cuerpo de la iteración.

Teniendo la plantilla en la cabeza ahora podemos implementar la primitiva de eliminación
de la primera ocurrencia de un dato:

1 bool lista_eliminar(lista_t *l, int dato) {
2 struct nodo **p = &l->prim;
3
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4 while (*p != NULL) {
5 struct nodo *actual = *p;
6 if(actual ->dato == dato) {
7 *p = actual ->sig;
8 free(actual);
9 return true;

10 }
11 p = &actual ->sig;
12 }
13 return false;
14 }

Este serı́a el código de la eliminación eliminando los casos particulares. Si seguimos el código
veremos que en la expresión *p = actual->sig el puntero p tiene uno de dos valores posibles,
o &l->prim si es la primera iteración o el &actual->sig de la última iteración (o sea, el que era
actual ya es anterior porque estamos en el siguiente ciclo) lo cual se expande a lo mismo que
habı́amos escrito cuando desplegamos el código en dos casos particulares en la implementación
previa a esta.

Insistimos en lo que dijimos al comienzo. Esta técnica es una aplicación de punteros intere-
sante, que nos permite subsanar el problema que tenı́amos al tener que modificar estructuras de
tipo diferente y la estamos presentando en este apunte como un ejemplo avanzado de punteros.
No recomendamos particularmente aplicar esta técnica a los algoritmos de listas, el nivel previo
de implementación es más que suficiente aunque implique lidiar con casos particulares.

19.7. Eficiencia

Retomemos las preguntas del capı́tulo anterior sobre eficiencia en la interfaz genérica de
listas, ¿qué podemos concluir al respecto de las listas enlazadas?

La caracterı́stica principal de la lista enlazada es que al ser, justamente, una estructura
enlazada siempre debemos recorrerla para descubrir sus nodos. El único elemento que está
disponible de forma inmediata es el primer elemento de la lista.

Por otro lado, al ser los nodos estructuras independientes entre sı́ agregar nodos de forma
intermedia no implica realizar los movimientos de memoria que tendrı́amos que hacer al operar
sobre arreglos. Insertar o eliminar un nodo en cualquier posición sólo implica mover referencias
de lugar. Eso sı́, primero hay que encontrar qué nodo es el que queremos modificar y, a menos
que estemos manipulando el primer nodo, para eso no tenemos otra alternativa que recorrer la
lista.

Entonces en prinicipio serán O(1) las operaciones de creación de la lista vacı́a y tanto la
inserción como eliminación del primer elemento. Ahora bien, la inserción, eliminación e incluso
acceso al dato de cualquier otro elemento o incluso conocer la longitud de la lista tendrán
complejidad O(n) porque implicaran recorrer la lista primero.

¿Se pueden mejorar estos órdenes? Sı́, guardando información redundante. ¿Qué queremos
decir con redundante? Queremos decir que no vamos a aportar información adicional a lo que
ya tenı́amos con la lista definida por la posición del primer elemento, pero que podemos tener
cosas precalculadas que nos ahorren tiempo. Por ejemplo, si nos interesara obtener la longitud
de la lista en forma O(1) podrı́amos tener un miembro en lista_t que lleve esa cuenta. Ahora
bien será parte de la invariante de representación que ese miembro lleve la cuenta real de nodos,
por lo tanto será condición de todas las primitivas mantener ese número actualizado. Almacenar
información redundante implica realizar más trabajo en muchos lugares, dependiendo del caso
eso podrá ser o no una ganancia.

En una lista enlazada nunca podremos tener referencias a todos los nodos, si hiciéramos eso
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perderı́a el sentido tener una lista enlazada porque necesitarı́amos un arreglo para guardar esas
referencias, pero puede ayudar tener una referencia al último nodo.

Si incluyéramos las dos cosas que mencionamos podrı́amos tener una estructura:

1 struct lista {
2 struct nodo *prim;
3 struct nodo *ult;
4 size_t longitud;
5 };

Tener una referencia al último harı́a O(1) la operación de insertar al final. Ambos agregados a
la estructura pueden mantenerse actualizados sin empeorar la complejidad de las primitivas ya
desarrolladas, por lo que son pura ganancia.

Dicho esto, imaginemos que tuviéramos la primitiva que devuelve el i-ésimo elemento de
la lista int lista_obtener(const lista_t *l, size_t i); como nos proponı́a la interfaz
genérica de listas. Si esa primitiva existiera Bárbara podrı́a estar tentada de operar:

1 for(size_t i = 0; i < lista_longitud(l); i++) {
2 int dato = lista_obtener(l, i);
3 printf(" %d\n", dato);
4 }

Esto no es buena idea. Si lista obtener tiene complejidad O(n) y estamos haciendo eso para
cada uno de los elementos de la lista, entonces iterar una lista tendrá complejidad O(n2).

Para iterar una lista necesitamos recorrer nodos, y dado que los nodos son parte de la
implementación interna de Alan, sólo Alan puede iterarla. Una solución que puede ofrecer
Alan es recorrer la lista y llamar a alguna función de Bárbara con cada dato, por ejemplo:

1 void lista_recorrer(const lista_t *l, void (* visitar)(int)) {
2 struct nodo *actual = l->prim;
3 while(actual != NULL) {
4 visitar(actual ->dato);
5 actual = actual ->sig;
6 }
7 }

De esta forma Bárbara puede delegar en Alan realizar alguna operación sobre cada uno de sus
datos.

Esta función que presentamos es un poco limitada por lo que vamos a complejizarla un
poco. Vamos a reimplementarla no para la lista de enteros si no para la lista genérica y vamos a
agregarle más complejidad a la función que nos manda Bárbara y es más fácil mostrar el código
que explicar lo que esperamos:

1 bool lista_recorrer(const lista_t *l, bool (* visitar)(void *dato ,
↪→ void *extra), void *extra) {

2 struct nodo *actual = l->prim;
3 while(actual != NULL) {
4 if(! visitar(actual ->dato , extra))
5 return false;
6 actual = actual ->sig;
7 }
8 return true;
9 }
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Introdujimos dos cosas nuevas (y una tercera de forma implı́cita). Por un lado la función
visitar() devuelve ahora un booleano, Bárbara puede interrumpir la iteración donde quiera
simplemente devolviendo false. Por el otro agregamos un parámetro adicional en la función.
Ese parámetro puede ser cualquier cosa que Bárbara necesite, Alan como lo recibe lo pasa. Si
Bárbara no lo necesitara podrı́a ser NULL pero puede ser un entero, un TDA, una estructura,
cualquier cosa que le dé contexto a su función de visita. Dijimos que habı́a algo implı́cito que
no estaba en la función anterior y es que en este caso, al tratarse el dato de un void * Bárbara
puede modificarlo y se modificará en la lista, cosa que no pasaba en la lista de enteros. Notar,
finalmente, que la función devuelve un booleano que indica si la iteración se completó o no.

Ejemplifiquemos un poco el uso de esta función por parte de Bárbara. Por ejemplo, si
Bárbara quisiera volcar su lista en un archivo:

1 bool escribir_en_archivo(void *dato , void *extra) {
2 char *s = dato;
3 FILE *f = extra;
4

5 if(fprintf(f, " %s\n", s) < 0)
6 return false;
7

8 return true;
9 }

10

11 int main(void) {
12 lista_t *l = lista_crear ();
13 lista_insertar_al_principio("est ás?");
14 lista_insertar_al_principio("cómo");
15 lista_insertar_al_principio("amigo");
16 lista_insertar_al_principio("Hola");
17

18 // Lista: {"Hola", "amigo", "cómo", "est ás?"}
19

20 FILE *f = fopen("archivo.txt", "wt");
21 if(! lista_recorrer(l, escribir_en_archivo , f))
22 fprintf(stderr , "Hubo␣un␣error␣escribiendo␣el␣archivo\n");
23 fclose(f);
24

25 lista_destruir(l, NULL);
26 return 0;
27 }

¿Cómo sabe la función escribir_en_archivo() que su primer parámetro es una cadena y su
segundo parámetro un archivo? Lo sabe porque es una responsabilidad de Bárbara. Si Bárbara
guardó en su lista genérica cadenas entonces cada dato será una cadena, del mismo modo, si
Bárbara pasa como puntero extra un archivo la función se llamará con ese dato. Bárbara tiene
que pasar una función consistente con sus datos. Del mismo modo, al destruir la lista Bárbara
sabe que sus cadenas viven en la memoria data (ver sección 8.6) por lo tanto son estáticas y no
deben ser liberadas, de ahı́ el NULL como parámetro.

Si no tuviéramos el parámetro extra y quisiéramos implementar esta misma funcionalidad
tendrı́amos o que abrir y cerrar el archivo en cada iteración, o utilizar variables globales o
similar, y no podrı́amos abortar la iteración si hubiera una falla.

Otro ejemplo, misma lista pero Bárbara quiere imprimir los primeros 3 elementos de la lista:

1 bool imprimir_n_primeros(void *dato , void *extra) {
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2 char *s = dato;
3 int *n = extra;
4

5 if(! *n) return false;
6

7 printf(" %s\n", s);
8 (*n)--;
9

10 return true;
11 }
12

13 int main(void) {
14 // ...
15

16 int n = 3;
17 lista_recorrer(l, imprimir_n_primeros , &n);
18

19 // ...
20 }

Como se dijo extra puede ser cualquier cosa. En ambos ejemplos fue una única variable, pero
si Bárbara necesitara pasar múltiples cosas podrı́a crear una estructura ad hoc que contenga
todo el contexto que necesite.

19.8. Iteradores

Como ya dijimos en el mundo de los contenedores a Bárbara lo único que le interesa
son los elementos que quiere persistir mientras que corre por cuenta de Alan el cómo los
almacena. Un contenedor internamente puede almacenar los elementos como considere y la
operación de iteración no siempre es evidente. Ası́mismo dado que son datos de Bárbara a
Bárbara puede interesarle iterar sobre ellos y realizar acciones y no siempre una primitiva de
recorrido como la que presentamos en la sección anterior es suficiente. Por esto es que existe
una categorı́a de TDAs que son los iteradores. Implementar un iterador para el contenedor será
una responsabilidad de Alan, para permitirnos recorrer los elementos del contenedor de forma
sencilla.

El iterador, que es un un TDA en sı́ mismo, forma parte del TDA del contenedor. Es decir,
tiene permitido el acceso a la representación interna del contenedor. Y tiene sentido que sea
ası́, justamente estamos proveyendo de un iterador porque con la encapsulación como TDA no
podrı́amos realizar una iteración eficiente.

La versión más sencilla de iterador nos deberı́a permitir recorrer el contenedor con la
estructura de un for de C, definido en términos de inicialización, incremento y final:

1 iterador_t *iterador;
2 for(iterador = iterador_crear(contenedor); ! iterador_termino(

↪→ iterador); iterador_siguiente(iterador)) {
3 void *dato = iterador_actual(iterador);
4 // ...
5 }
6 iterador_destruir(iterador);

Podrı́amos implementar este iterador de forma muy sencilla:
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1 struct lista_iterador {
2 struct nodo *actual;
3 };
4

5 typedef strcut lista_iterador lista_iterador_t;
6

7 lista_iterador_t *lista_iterador_crear(const lista_t *l) {
8 lista_iterador_t *it = malloc(sizeof(lista_iterador_t));
9 if(it == NULL) return NULL;

10

11 it->actual = l->prim;
12

13 return it;
14 }
15

16 void lista_iterador_destruir(lista_iterador_t *it) {
17 free(it);
18 }
19

20 bool lista_iterador_termino(const lista_iterador_t *it) {
21 return it->actual == NULL;
22 }
23

24 bool lista_iterador_siguiente(lista_iterador_t *it) {
25 it->actual = it->actual ->sig;
26 return it->actual != NULL;
27 }
28

29 void *lista_iterador_actual(const lista_iterador_t *it) {
30 return it->actual ->dato;
31 }

Esta es la funcionalidad básica del iterador. Este iterador sirve, obviamente, para iterar. Este
iterador no modifica los elementos de la lista que itera.

También es posible extender la funcionalidad de un iterador para que le permita a Bárbara
eliminar el elemento actual o insertar un elemento previo al actual (y poder seguir recorriendo
la lista después de realizar esas operaciones).

La interfaz del mismo serı́a:

1 // Elimina el dato actual de la lista y lo devuelve. El iterador
↪→ pasa a apuntar al siguiente en la lista.

2 void *lista_iterador_eliminar(lista_iterador_t *it);
3

4 // Inserta un dato previo al dato acutal. El iterador permanece
↪→ apuntando al actual.

5 bool lista_iterador_insertar(lista_iterador_t *it , void *dato);

Para implementar estas primitivas hay que tener dominio sobre la lista, porque las ope-
raciones de modificación al comienzo de la misma necesitan acceso a l->prim. Además para
eliminar el dato actual o insertar un nodo en la posición previa hay que tener acceso al nodo
anterior.

Se deja al alumno la implementación de este iterador de lista enlazada con estas operaciones,
pero hay dos implementaciones posibles. O guardando en el iterador el lista_t original y el
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nodo de la iteración pasada, o implementando un iterador que posea únicamente un doble
puntero al miembro del actual, como se vio en la sección 19.6.

En el mundo de los contenedores los iteradores son la forma de proveer una recorrida por
los elementos sin importar cómo estén estructurados en memoria. En muchos lenguajes de
programación la interfaz que tienen los iteradores está totalmente especificada por el lenguaje
y todos los contenedores se recorren con las mismas primitivas. Incluso muchos lenguajes de
programación implementan una estructura de control llamada foreach que permite recorrer cada
elemento de un contenedor sin utilizar ı́ndices.
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Otras estructuras enlazadas

20.1. Pilas

Saliéndonos de los contenedores de tipo lista, nos interesa abordar dos tipos de contenedores
que se utilizan mucho en la modelización y resolución de problemas. El primero de ellos es la
pila.

La pila es un tipo de contenedor donde se almacenan elementos de tal forma de que los
mismos se recuperan en el orden inverso en el que se ingresaron. La particularidad de la pila
es que sólo podemos ver el último elemento almacenado. Pensar en que tenemos un mazo de
cartas donde apilamos1 una carta sobre otra sobre otra. Si miramos el pilón veremos sólo la
última que agregamos y si la retiramos la anteúltima y ası́.

La interfaz de la pila se define de la siguiente manera:

crear vacia() → P: Crea una pila vacı́a y nos la devuelve como un objeto P.

es vacia(P) → bool: Devuelve true si la pila P está vacı́a.

apilar(P, x): Apila el elemento x en el tope de la pila P.

desapilar(P) → x: Desapila el elemento x del tope de la pila P y lo devuelve.

ver tope(P) → x: Devuelve el elemento x del tope de la pila P (pero no lo desapila).

Notar que la interfaz de pilas no provee ninguna forma de conocer la longitud de una pila,
sólo si quedan elementos en ella o no. Tampoco hay forma de iterar los elementos, en la pila
sólo importa el elemento del tope.

Por completitud en inglés la pila se llama stack, la operación de apilado se llama push,
la de desapilado pop y la de ver tope peek. No es casualidad que llamemos stack al espacio
de la memoria donde viven las variables locales de las funciones. Esta zona de la memoria
implementa una pila, apilándose variables cuando entramos a una función y desapilándose
cuando retornamos de la misma. Obviamente al terminar una función recuperamos el espacio
de la última función llamada previa a ella.

Se dice que la pila es una estructura de tipo LIFO, “last in, first out”, el último dato que entra
es el primero que sale.

Al igual que en la interfaz de lista, queremos implementar todas las operaciones de la pila
tal que sean O(1) cada una de ellas.

1Es difı́cil definir una pila sin utilizar palabras que remiten a pilas, por fuera de la ciencia de datos es una estructura
cotidiana.
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20.1.1. Pila sobre un arreglo

Es posible implementar la pila sobre un arreglo dinámico, de tal manera que la operación
de apilar sea la operación de agregar al final.

El tope de la pila estará siempre al final del arreglo.
Las operaciones de desapilado consistirán en devolver el último elemento del arreglo.
Por la dinámica en la que se dan las operaciones LIFO es fácil ver que todas las funciones

que pide la interfaz son amigables con arreglos obteniendo la complejidad O(1) deseada.

20.1.2. Pila sobre una estructura enlazada

Es posible implementar la pila sobre una estructura enlazada tipo lista. En este caso dado
que la pila interactúa con el tope tiene sentido que el tope sea el primer elemento de la lista.

Entonces, las operaciones de apilado serán una inserción al principio mientras que las
operaciones de desapilado serán operaciones de borrar el primero.

Al igual que con arreglos es evidente ver que todas estas operaciones serán O(1).

20.2. Colas

El otro contenedor que nos interesa abordar son las colas. En las colas los elementos se
almacenan de tal manera que cuando retiro elementos voy a retirar los que hayan entrado
primero. Pensemos, por ejemplo, en la fila de un supermercado. Cada cliente va llegando y se
pone al final de la fila. Por el otro lado el cajero (o los cajeros) atienden al cliente que está al
frente de la fila.

La interfaz de la pila se define de la siguiente manera:

crear vacia() → C: Crea una cola vacı́a y nos la devuelve como un objeto C.

es vacia(C) → bool: Devuelve true si la cola C está vacı́a.

encolar(C, x): Encola el elemento x en el tope de la cola C.

desencolar(C) → x: Desencola el elemento x del frente de la cola C y lo devuelve.

ver frente(C) → x: Devuelve el elemento x del tope de la cola C (pero no lo desencola).

En inglés a la cola se la denomina queue, la operación de apilado se llama enqueue, la de
desapilado dequeue y ver el frente puede ser front o peek.

La cola se considera una estructura de tipo FIFO, “first in, first out”, el primero que llega es
el primero que se va. Se utiliza principalmente para vincular pedidos que llegan con sistemas
que pueden atender consultas limitadas.

20.2.1. Cola sobre un arreglo

La implementación de una cola sobre un arreglo no es una operación inmediata. A diferencia
de la pila, donde los elementos se insertaban desde un lado y se retiraban del otro, en la cola
los elementos entran de un lado y se retiran del otro. No hay forma de que usar insertar al
comienzo y eliminar del final o viceversa garanticen tiempo constante en ambas operaciones.

Cuando se implementan colas sobre arreglos se suele hacer sobre arreglos estáticos y se
implementan como arreglos circulares. Un arreglo circular es un arreglo en el que si me paso del
final vuelvo a empezar por el comienzo. Dicho de otra forma, si un arreglo v tiene N elementos
puedo acceder al elemento i-ésimo como v[i % N]. La operación de módulo mantiene el acceso
a los ı́ndices en el rango 0. . N − 1.

155
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La idea de implementar la cola sobre este arreglo es tener un ı́ndice para el frente de la cola
y la cantidad de elementos encolados. Simplificando a una cola de enteros con un tamaño N fijo
en tiempo de compilación:

1 struct cola {
2 int datos[N];
3 size_t frente;
4 size_t cantidad;
5 };
6

7 typedef struct cola cola_t;

Al inicio tanto el frente como la cantidad valen cero.
El frente es la posición del primer elemento de la cola, mientras que la posición del último

se calcula como frente + cantidad, siempre todo módulo N.
La operación de encolado insertará en la posición del último e incrementará la cantidad:

1 void cola_encolar(cola_t *c, int dato) {
2 c->datos[(c->frente + c->cantidad ++) % N] = dato;
3 }

del mismo modo, la operación de desencolado quitará el elemento del frente, lo avanzará y
decrecerá la cantidad:

1 int cola_desencolar(cola_t *c) {
2 c->cantidad --;
3 return c->datos[c->frente ++ % N];
4 }

Se puede ver cómo los elementos encolados estarán entre frente y frente + cantidad, mo-
viéndose siempre hacia el final del arreglo. Cuando uno de los ı́ndices se caiga del arreglo va a
volver a recomenzar.

Está claro que si la cola está implementada sobre un arreglo de N elementos entonces está
limitada en tamaño. Esto quiere decir que, guardándonos los chistes, se nos puede llenar la
cola. Las primitivas previas no están completas sin el chequeo de que la cola se encuentre llena
o se haya vaciado.

Es inmediato ver que:

1 bool cola_esta_vacia(const cola_t *c) {
2 return c->cantidad == 0;
3 }
4

5 bool cola_esta_llena(const cola_t *c) {
6 return c->cantidad == N;
7 }

Debe ser precondición de encolar que la cola no esté llena y debe ser precondición de
desencolar que la cola no esté vacı́a. Las primitivas previas deben ser modificadas para verificar
esto.

Las colas se utilizan en muchı́simas operaciones de bajo nivel donde se tiene una capacidad
de procesamiento limitada y se atienden pedidos a medida que se da abasto para procesarlos.
Por ejemplo, el buffer de entrada de una aplicación se puede implementar como una cola. Si la
cantidad de caracteres que un usuario ingresó en el teclado es tanta que no se llegan a procesar
(por ejemplo, se trabó una tecla) pueden descartarse todos los que superen la cantidad máxima.
En muchas aplicaciones de bajo nivel se trabaja con memoria limitada y con buffers estáticos. En
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otras aplicaciones si una cola se llena bien se puede redimensionar, copiar todos los elementos
viejos a la nueva cola y seguir trabajando. Si las colas se utilizan para ordenar los recursos
que llegan en función de los recursos que se pueden atender, muchas veces que se llene una
cola implica que hay un problema más grave porque el sistema no da abasto para atender los
pedidos que llegan.

20.2.2. Cola sobre una estructura enlazada

A diferencia de la implementación de la cola sobre un arreglo que es complicada, la cola se
implementa de manera muy natural sobre una estructura enlazada. Si la estructura enlazada se
implementa con una referencia al primer elemento y al último elemento son eficientes tanto las
operaciones de insertar al final como de eliminar el primero.

Entonces la cola, a diferencia de la pila, crecerá hacia adelante. El primer elemento de la
estructura enlazada será el frente de la cola, mientras que el último de la estructura enlazada
será el último de la cola. Desencolar será la operación de eliminar primero, encolar será la
operación de insertar al final. Ambas operaciones se realizan en O(1).

A diferencia de la cola sobre arreglo, la implementada sobre una estructura enlazada no
tiene lı́mite de capacidad.

20.3. Otras estructuras enlazadas

Sin interés por ser exhaustivos mencionaremos algunas variaciones de estas estructuras
enlazadas y algunas versiones más generales de las mismas.

20.3.1. Listas doblemente enlazadas

La lista doblemente enlazada es una lista tal que cada nodo contiene dos referencias, una al
nodo anterior y otra al nodo siguiente.

Esto permite que la lista pueda recorrerse en uno u otro sentido y que sean eficientes tanto
las operaciones referidas al primer nodo como al último.

20.3.2. Listas ordenadas

Una lista enlazada ordenada es una lista en la cual los datos están insertados según algún
criterio de ordenamiento.

En este tipo no tendremos primitivas de insertar al comienzo, al final ni en ninguna posición
particular. La inserción sólo puede realizarse en la posición que no altere el orden.

Más allá de que la lista ordenada tenga aplicaciones, notar que no va a tener las ventajas
que podrı́a tener un vector ordenado, dado que no se puede aplicar el algoritmo de búsqueda
binaria (ver 17.3) sobre una lista enlazada. El acceso a cualquier elemento va a seguir siendo
O(n).

20.3.3. Listas circulares

En las listas circulares el siguiente del último nodo apunta al primero, es decir, la lista se
puede recorrer infinitas veces.

Esta es una estructura que suele utilizarse, por ejemplo, cuando se quiere ciclar de forma
indefinida entre diferentes tareas.
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20.3.4. Árboles

No vamos a profundizar en árboles dado que es un tema que excede a esta materia, sino
apenas describirlos. Los árboles son similares a las listas enlazadas, pero cada nodo tiene en
principio referencias a dos nodos (ramas) siguientes, uno a izquierda y uno a derecha. Es decir,
es una lista que se bifurca en dos en cada nodo.

Hay diferentes maneras de construir y recorrer los árboles, pero la idea general detrás de
los árboles es que si todos los datos se pueden distribuir de manera balanceada entre los nodos
a izquierda y derecha de cada nodo, entonces pueden almacenarse N nodos con una distancia
desde el primero hasta el final de log2 N. Esto permite que muchas operaciones que en las listas
enlazadas son lineales decrezcan a órdenes de complejidad logarı́tmicos.

Cuando se dice que en un árbol cada nodo tiene dos ramas estamos hablando de árboles
binarios. Se pueden plantear árboles con tantas ramas como uno quiera.

Las listas enlazadas son un caso patológico de un árbol cuyos nodos están tan desbalanceados
que tienen sólo un nodo siguiente.

20.3.5. Grafos

Los grafos son estructuras enlazadas donde cada nodo puede contener referencias (aristas)
a cualquier otro nodo, sin lı́mites de cantidad. A diferencia de las listas enlazadas y los árboles,
donde los nodos no pueden tener referencias a nodos que están antes en la estructura, los
grafos pueden tener ciclos, es decir, podemos recorrer las referencias y volver a nodos que ya
atravesamos.

Los grafos se utilizan para modelar problemas como por ejemplo un sistema de rutas, o el
tendido eléctrico, redes, etc.

Un árbol se puede definir en términos de grafos como un grafo acı́clico dirigido. Por lo que
las listas enlazadas son, a su vez, un caso particular de grafos.

20.3.6. Colas de prioridad

Cuando presentamos las colas utilizamos de ejemplo la cola de un supermercado. Las colas
del supermercado no son colas como las que mencionamos, hay personas que tiene prioridad
para adelantarse en la cola, sin por eso perderse el orden de llegada.

Muchos problemas de la vida real se resuelven sobre colas de prioridad, es decir, colas que
pueden mantener el orden relativo entre elementos de la misma prioridad pero que tienen
capacidad de atender antes a elementos con mayor prioridad. Pensar en la atención de una
guardia médica, o en un banco que tiene diferentes categorı́as de clientes, etc.

Las colas de prioridad generalmente no se implementan sobre listas enlazadas sino sobre
árboles.
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Recursividad

21.1. Recursividad

La recursividad es cuando la definición de un problema se da mediante el uso de recursivi-
dad. No, volvamos a empezar. Decimos que la solución de un problema es recursiva cuando se
da en términos de sı́ mismo. Por ejemplo, en los capı́tulos anteriores estudiamos estructuras
enlazadas, ¿cómo es la estructura de una lista?, una lista está formada por nodos donde cada
nodo tiene dos cosas: un dato y la referencia a un nodo, que a su vez tiene un dato y la referencia
a un nodo, que a su vez tiene un dato y la referencia a un nodo... que finalmente tiene una
referencia nula. Si no la lista serı́a infinita.

Si bien en el mundo abstracto pueden haber definiciones recursivas que sean infinitas, en el
mundo computacional tenemos memoria limitada y necesitamos que las definiciones recursivas
en algún momento se terminen. Retomando el ejemplo, la lista tiene un caso general que es
recursivo, nodo contiene referencia a siguiente nodo y esta estructura se repite tantas veces
como queramos, y finalmente tiene un caso base que es no recursivo donde se interrumpe la
recursividad.

En el mundo de las matemáticas hay muchos problemas que se definen de forma recursiva
mediante ecuaciones de recurrencia, por ejemplo la definición del factorial:

n! =
{

n(n− 1)! si n > 0,
1 si n = 0.

Por ejemplo, si quisiéramos calcular 4! veremos que, como 4 > 0 tenemos que operar 4× 3!, lo
cual implica calcular un nuevo factorial. Luego 4× 3× 2! que implica calcular 4× 3× 2× 1!. Y
parecerı́a que vamos a seguir operando por siempre, pero resulta que la fórmula anterior implica
calcular 4× 3× 2× 1× 0! y para resolverla tenemos que calcular 0! y este valor no está definido
de forma recursiva sino que se trata de un caso base, vale 1. Entonces 4! = 4× 3× 2× 1× 1 = 24.

Si quisiéramos implementar esta función en C no habrı́a mayores complicaciones:

1 int factorial(int n) {
2 // Caso base
3 if(n == 0)
4 return 1;
5

6 // Caso general
7 return n * factorial(n - 1);
8 }
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En la sección 7.2 estudiamos la pila de ejecución de funciones. Ahı́ vimos que cada invocación
de una función genera un marco de ejecución diferente, por lo que el espacio local de variables
es distinto en cada instancia.

Si invocáramos a factorial(4), dado que 4 no representa un caso base se ejecutará la lı́nea
de return n * factorial(n - 1). Para resolver esta expresión hay que evaluar la llamada a
factorial(n - 1). Llamar a una función implica suspender la ejecución de la función actual
y apilar un nuevo espacio de variables en el stack. Mientras la invocación de factorial(4)
espera se llamará a factorial(3) y se repetirá la misma situación. La llamada con 3 invocará a
la llamada con 2, que invocará a la llamada con 1 que se quedará esperando a la llamada de
factorial(0) para operar n * factorial(n). Ahora bien, cuando se invoque factorial(0)
la misma constituye un caso base, por lo que la función terminará en la expresión return 1.
Es decir factorial(0) evalúa a 1, por lo que la lı́nea return n * factorial(0) de la llamada
a factorial(1) evaluará a return 1 * 1 y la función devolverá un 1. Eso desbloqueará la
llamada a la función con 2, que devolverá un 2, y a su vez desbloqueará la llamada a la función
con 3 que devolverá un 6. Nos habı́amos quedando esperando en la llamada original al factorial
que operará 4× 6 y devolverá 24.

En la última oración del párrafo anterior hablamos de “la llamada original al factorial”.
La realidad es que, a menos que tengamos acceso a todo el código fuente del programa
para analizarlo, nunca podemos asumir que nuestra invocación a una función recursiva es la
“original”. Sı́ sabemos que para computar el factorial de 4 tendremos que depender de la misma
función evaluada en 3, pero nada nos indica que no se está invocando factorial de 4 para
computar el factorial de un número superior. Esta es la esencia de un procedimiento recursivo.

21.2. Iteración versus recursión

En la sección anterior dijimos que el factorial se definı́a de forma recursiva, sin embargo
probablemente lo hayas visto definido como n! = 2× 3× · · · × (n − 1) × n, o, lo que es lo
mismo como n! = Πn

i=2i, donde ambas definiciones son evidentemente iterativas. Entonces, ¿el
factorial es recursivo o iterativo?

Los problemas nunca son iterativos o recursivos, esa distinción aplica para los algoritmos.
Existe una serie de problemas que tal vez sea más sencillo pensarlos de forma iterativa o tal vez
sea más sencillo pensarlos de forma recursiva, pero todo lo que se puede resolver de una forma
se puede resolver de la otra, y muchos algoritmos son mixtos.

En este curso vamos a referirnos a un algoritmo o implementación como recursiva cuando
el problema se resuelve con una función que se llama a sı́ misma repetidas veces para ir
reduciendo el problema. En cambio diremos que es iterativo cuando lo hace iterando.

Volviendo al factorial, supongamos la siguiente implementación iterativa:

1 int factorial(int n) {
2 int f = 1;
3 for(int i = 2; i <= n; i++)
4 f *= i;
5 return f;
6 }

Nos interesará comparar cómo se comporta esta implementación con respecto a la recursiva
que presentamos en la sección anterior.

Con lo que sabemos deberı́amos poder caracterizar fácilmente a la implementación iterativa.
Tenemos una iteración que depende del valor de n, dentro de ella se realizan operaciones
básicas, por lo que el algoritmo deberı́a ser O(n) en tiempo de ejecución. Ahora bien, vamos a
sumar una variable de análisis que no solemos medir y es el consumo de memoria. Esta función
requiere para operar lo que contiene el marco de ejecución de factorial(), apenas un par de
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variables locales. No importa el tamaño de n, la función siempre va a consumir los mismos
recursos espaciales, por lo tanto será O(1) en uso de memoria.

En la sección anterior hicimos un seguimiento de la ejecución de la versión recursiva. Vimos
que la cantidad de llamadas recursivas va a depender del valor de n. A diferencia de la versión
iterativa, la función de la implementación recursiva apenas hace operaciones sencillas dentro,
no importa el tamaño de n (a menos que justo valga 0 y sea un caso base) la función se va
a ejecutar en O(1) más el tiempo que lleve ejecutar factorial(n - 1). Como la cantidad de
veces que se autollama es lineal podemos concluir que la implementación es O(n) en tiempo.

Ahora bien, ¿qué pasa en espacio? A diferencia de la implementación iterativa, en la versión
recursiva cada llamada a la función apila un nuevo marco de ejecución en el stack y las distintas
llamadas se irán acumulando hasta llegar al caso base. Entonces en el peor momento vamos a
tener aproximadamente n marcos de ejecución en el stack. Cada uno de ellos tiene un tamaño
fijo el cual no depende de n, pero sumando a todos ellos el espacio necesario será O(n).

Comparando la solución iterativa con la recursiva observamos que ambas demoran el mismo
orden de complejidad temporal pero la versión recursiva necesita memoria lineal.

Supongamos el algoritmo de cálculo de la potencia xn en su versión iterativa:

1 float potencia(float x, int n) {
2 int p = x;
3 for(int i = 0; i < n; i++)
4 p *= x;
5 return p;
6 }

No hay mucho que decir sobre esta implementación, es el algoritmo que aprendemos en
la escuela primaria. Aunque sı́ hay algo que decir, ¿cómo calcuları́as a mano 311? Más allá de
que la respuesta es 311 = 3× 3× 3× . . .× 3, no sabemos cómo realizar una multiplicación en
simultaneo de 11 miembros por lo que si tuviéramos que operar a mano harı́amos las cuentas
de a pares. Muchas veces como la computadora opera de forma rápida, somos muy veloces
para programar cosas que si tuviéramos que hacerlas a mano lo pensarı́amos dos veces.

Volvamos al problema:

311 = 3× 3× 3× 3× 3× 3× 3× 3× 3× 3× 3.

¿Hay algún resultado que podamos calcular una única vez y reutilizarlo? Probablemente
identifiques rápido que calculando una única vez 3× 3 = 9 podemos casi que reducir los
términos a la mitad y llegar a una expresión de tipo (3 × 3)5 × 3. Como dijimos, cuando
tenemos que hacerlo a mano probablemente miremos con atención, nada mal, pasamos de
tener que resolver 11 multiplicaciones a tener que resolver sólo 7. ¿Se puede ir más allá?
Probablemente podamos hacer con la potencia que apareció lo mismo que hicimos antes.

Habiendo planteado la idea vamos a proponer esta forma de calcular las potencias. Si n es
par podemos calcular xn sencillamente como x

n
2 · x n

2 , ¿se ve?, es sencillamente agrupar la mitad
de los términos por un lado y la mitad por el otro. Dado que las dos pontencias son iguales
la operaremos sólo una vez. ¿Y si n fuera impar?, es lo que nos pasó en el ejemplo anterior,
tendremos que compensar.

Entonces:

xn =


x

n
2 · x n

2 si n es par,
xb

n
2 c · xb

n
2 c · x si n es impar,

1 si n = 0.

Donde b· · ·c es el operador piso, redondear para abajo (truncar). Notar que si vamos a definir
nuestra solución como una ecuación de recurrencia necesitamos tener un caso base para que la
misma esté completa. En este caso elegimos que si n = 0 el problema ya no se define más en
términos de sı́ mismo.
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Volviendo al ejemplo, 311 = 35 · 35 · 3, donde 35 = 32 · 32 · 3, donde 32 = 31 · 31, y donde
31 = 30 · 30 · 3, siendo 30 = 1. ¿Podrı́amos haber agregado como condición que si n = 1 entonces
xn = x? Podrı́amos, hubiéramos ahorrado alguna cuenta. Por fuera de eso, ¿se ve cómo bajamos
notablemente el número de operaciones?

Implementemos esta solución en C:

1 float potencia(float x, int n) {
2 if(n == 0)
3 return 1;
4

5 float p = potencia(x, n / 2);
6

7 if(n % 2 == 0)
8 return p * p;
9 else

10 return p * p * x;
11 }

Repitamos lo mismo que hicimos con el factorial para las soluciones iterativas y recursivas
de la potencia.

La versión iterativa es sencilla, en tiempo tenemos una iteración por lo que es O(n) mientras
que en espacio sólo variables locales por lo que será O(1).

En la versión recursiva el análisis requiere un poco más de atención, pero estamos ante un
resultado ya conocido. Cada llamada recursiva hace operaciones sencillas que no dependen
de n y en total tendremos tantas llamadas recursivas como veces que podamos dividir a n
por 2, como en el algoritmo de la búsqueda binaria (ver sección 17.3). Es decir, la complejidad
temporal terminará siendo O(log n). En cuanto a la espacial, otra vez tendrá que ver con
cuántas llamadas a función tengamos y es este mismo número, o sea el algoritmo es logarı́tmico
tanto en tiempo como en espacio.

A diferencia de lo que habı́amos evaluado en el factorial, la formulación recursiva del
problema de la potencia realmente aporta una mejora significativa en tiempo. Es cierto que
consume más espacio, pero recordemos que logarı́tmico es prácticamente lineal1.

Como bien dijimos, las implementaciones iterativas y recusivas son intercambiables, pero
no es tan sencillo implementar el algoritmo de potencia eficiente que acabamos de presentar de
forma iterativa.

Volviendo al tema de la memoria, como se mencionó en la introducción de memoria dinámica
(capı́tulo 11), el stack es muy limitado en espacio. Si se realizan demasiadas llamadas recursivas
el stack se llenará y se generará un desbordamiento del stack (stack overflow). Este error es un
error irrecuperable. Un algoritmo recursivo que utiliza espacio lineal es bienvenido sólo si el
parámetro del que depende es acotado. Si ese parámetro puede ser arbitrariamente grande es
una pésima idea proponer una solución recursiva que utilice memoria lineal, sencillamente se
llenará el stack y se romperá la aplicación.

21.3. Diseño de algoritmos recursivos

En muchos casos va a ser el objetivo resolver un problema utilizando recursividad, por lo
que queremos aprender una forma de pensar problemas de tal manera de llegar a algoritmos
recursivos.

Estructuralmente la idea de un algoritmo recursivo es tener casos bases con soluciones
definidas y luego un caso general. Para que el caso general resuelva usando recursividad lo

1O, mejor dicho, que dado que n no puede ser nunca mayor que el entero más grande, es decir 232, entonces
log2 n ≤ 32. Nunca haremos más de 32 llamadas.

162



NOTAS DE TA130 SEBASTIÁN SANTISI

que se va a hacer es intentar desarmar el problema en problemas análogos más sencillos de los
cuales podamos obtener una solución de forma más fácil que para el problema original. A eso
nos referiremos más adelante cuando hablemos de “reducir” el problema. Cuando decimos
reducir en problemas análogos queremos decir que no estamos cambiando la naturaleza del
problema que recibimos, el problema va a ser el mismo pero, por ejemplo, con menos elementos.

Habiendo hecho esa introducción una manera de pensar un algoritmo recursivo es siguiendo
estos pasos:

1. Empezaremos planteando problemas donde la solución al problema sea inmediata. Con
inmediato queremos decir que no haya que hacer operaciones adicionales para conocer la
respuesta. Por ejemplo, si el problema fuera buscar un elemento en un vector, ¿qué pasa
si el vector está vacı́o?, puedo decir de forma inmediata que el elemento no está, sin hacer
nada adicional.

2. Lo siguiente que tendremos que plantear es una estrategia de reducción del problema.
Por ejemplo, sacar un elemento, partir al medio el problema, descartar alguna parte, etc.

3. Ahora vamos a imaginar que tenemos una función ya implementada que me devuelve
la solución para el problema reducido. No importa cómo esté implementada, puede ser
iterativa, puede ser recursiva, puede ser mágica. Lo importante es que si pregunto la
solución al problema reducido la obtengo.

4. Con la solución del problema reducido, ¿cómo respondo mi problema original? Es decir,
en el segundo ı́tem saqué un elemento, partı́ al medio el problema, descarté alguna parte...
¿cómo la respuesta que me dio la función del ı́tem 3 me ayuda a resolver el problema
original?

5. Este último ı́tem va a parecer una formalidad pero es el que le da coherencia al resto.
Si reduzco el problema como planteé en el ı́tem 2, ¿llego eventualmente a uno de los
casos inmediatos que planteé en el ı́tem 1? Si sı́, entonces ocurre la magia: La función
misteriosa que utilicé en el ı́tem 3 es la misma que estoy implementando y tengo una
solución recursiva.

Sin enredarnos más utilicemos esta receta para resolver un problema.

21.3.1. Ejemplo 1

Supongamos que queremos implementar de forma recusiva la función bool contiene(
↪→ const int v[], size_t n, int elem) que nos dice si un elemento está o no en un vector.

El primer ı́tem nos dice que planteemos condiciones donde sea inmediata la respuesta.
Propongamos una: Si el vector tiene 0 elementos entonces podemos decir con seguridad que el
elemento no está en él.

Movámosnos al siguiente ı́tem, reduzcamos el vector sacándole su primer elemento. Notar
que este ı́tem es absolutamente arbitrario, estamos proponiendo esa forma de reducirlo porque
queremos, no es la única y la que elijamos cambiará por completo el algoritmo al que lleguemos.

El tercer ı́tem nos dice que imaginemos que tenemos una función que si la llamamos
bool b = funcion_magica(v + 1, n - 1, elem); nos puede decir si el elemento está en el
vector después de que le sacamos su primer elemento.2

El cuarto punto es cuando realmente resolvemos el problema de forma recursiva: Si podemos
aprovechar la respuesta del problema reducido para resolver el problema original todo va a
estar bien. Si no, fallaremos en obtener una solución recursiva.

2Lamentablemente esta función mágica funciona para vectores de tamaño n− 1 pero no de tamaño n...
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Entonces, tenı́amos el vector v de n elementos. Podemos pensar al vector como v =
{v0, v1, v2, · · · , vn−1}. Nosotros partimos al vector como v = v0 ∪ {v1, v2, · · · , vn−1} y sabe-
mos, porque nos lo dijo una función, si el elemento que buscamos está en el tramo final del
vector. ¿Esto resuelve nuestro problema? En principio hay dos opciones, si el elemento está en
ese tramo, entonces el valor de v0 es irrelevante, el elemento va a estar en el vector original. ¿Y
si no está?, en ese caso es importante verificar si v0 no es el elemento que buscamos, si fuera
entonces estarı́a en el vector original pero no en el reducido.

Bien, tenemos los 4 primeros ı́tems de nuestra receta el quinto ı́tem nos dice que tenemos
que chequear si nuestra reducción converje a la solución inmediata que planteamos. Bueno, si a
un vector de n elementos le saco elementos de a uno por vez eventualmente llegaré a tener un
vector de cero elementos. Entonces esto nos dice que no necesitamos la función mágica porque
resolvimos el problema de forma recursiva.

Implementémoslo:

1 bool contiene(const int v[], size_t n, int elem) {
2 if(n == 0)
3 return false;
4

5 return v[0] == elem || contiene(v + 1, n - 1, elem);
6 }

Notar que escribimos literalmente el desarrollo que hicimos previamente, si vamos al detalle
la condición v[0] == elem es un caso base, aunque no lo hayamos escrito como uno.

21.3.2. Ejemplo 2

La mejor manera de entender la receta es hacer otro ejemplo... pero con el mismo ejemplo.
Es decir, vamos a seguir las reglas de manera diferente para llegar a una solución diferente y
ponerlas a prueba.

Empecemos con el mismo planteo, el vector vacı́o no posee el elemento.
En el ı́tem 2 habı́amos tomado una decisión arbitraria, tomemos otra: Vamos a partir el

vector al medio.
Entonces si partimos el vector en dos tenemos dos problemas reducidos podremos llamar:

1 bool b_izquierda = funcion_magica(v, n / 2, elem);
2 bool b_derecha = funcion_magica(v + n / 2, n - n / 2, elem);

(Sı́, esa es la forma de partir un vector en dos “mitades”, no nos olvidemos de que no sabemos
si n es par o no.)

Tenemos la solución a la pregunta sobre las dos mitades del vector, ¿cómo afecta a la
solución del vector completo? La respuesta deberı́a ser inmediata, tanto si b_izquierda como
b_derecha son true el elemento está en el vector.

Entonces podemos escribir:

1 bool contiene(const int v[], size_t n, int elem) {
2 if(n == 0)
3 return false;
4

5 return contiene(v, n / 2, elem) || contiene(v + n / 2, n - n /
↪→ 2, elem);

6 }

¿Sı́? Pues no, definitivamente no.
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Sin entender mucho de recursividad deberı́a llamarte la atención una cosa, tenemos una
implemetación que nos dice si un elemento está o no en un vector y en todo el código fuente
no hay en ningún lugar una comparación de elem con algo. Es más, el único return explı́cito
que aparece dice false y no hay ninguna otra expresión booleana que pueda devolver algo
distinto. ¿Qué falló?

Falló que no alcanza con los ı́tems 1, 2, 3 y 4 de la receta. El ı́tem 5 no es una formalidad o
una conclusión, es algo que tiene que ser verificado.

Si partimos un vector de n elementos sucesivas veces al medio no vamos a llegar siempre
a un vector de tamaño 0. Es fácil verlo, si tenemos un vector de un elemento 1/2 = 0 pero
1− 1/2 = 1, se parte en un vector de 0 y otro de 1. Entonces no podemos decir que la función
mágica sea nuestra función.

Destaquemos esto, si realmente tuviéramos implementada previamente una función que
resolviera el problema, podrı́amos llamarla en la lı́nea 5 de nuestra solución y el problema
funcionarı́a. Lo que no podemos decir es que esa función mágica es la nuestra y convertir
nuestra solución en una solución recursiva.

¿Cómo solucionamos el problema? Básicamente el problema que estamos teniendo es que la
reducción que planteamos en 2 no converje al caso base que propusimos en 1. Una solución
serı́a cambiar la forma de reducir, por lo que cambiarı́a por completo el algoritmo, la otra
solución serı́a proponer un nuevo caso base. Podrı́a pasarnos que la forma de reducir que
pensamos no vaya para ningún lado útil, pero en este caso es inmediato ver que podemos
agregar un caso base que solucione el problema.

Retomemos el ı́tem 1, si el vector tiene un solo elemento también es inmediato decir si el
elemento se encuentra en el vector o no. Basta con chequear que ese único elemento sea o no el
que buscamos.

Como dividir n por dos repetidas veces siempre va a converger a 1 entonces cumplimos
todos los pasos de la receta:

1 bool contiene(const int v[], size_t n, int elem) {
2 if(n == 0)
3 return v[0] == elem;
4

5 return contiene(v, n / 2, elem) || contiene(v + n / 2, n - n /
↪→ 2, elem);

6 }

Notar que este algoritmo recursivo es diferente a los que analizamos hasta el momento. En
los que habı́amos analizado hasta ahora habı́a sólo una llamada recursiva y acá hay dos. Si
bien estamos partiendo el problema al medio no es que descartamos una de las dos mitades
si no que lo partimos al medio para operar las dos mitades por separado. La cantidad de
veces totales que se va a llamar a la función será O(n). Ahora bien, ¿es esta solución lineal en
memoria? No, porque las expresiones en C se evalúan de a términos. Cuando cualquiera de
las invocaciones de contiene() ejecuten la lı́nea 5 primero se resolverá una de las llamadas
y luego la otra3. Entonces, como se trata de llamadas disjuntas, hasta no agotarse una de las
ramas no se evaluará la otra y como cada una de las ramas depende de la cantidad de veces
que n pueda divirdirse por dos la máxima memoria terminará siendo O(log n).

Entre la solución de sacar un elemento o partir al medio deberı́a ser obvio que la primera
no es viable. Cualquier vector de tamaño considerable nos harı́a explotar el stack. En cambio
esta versión parte al medio, por lo tanto es logarı́tmica. De todos modos no parecemos haber
ganado nada con respecto a la implementación iterativa (que implementamos en 17.3), más allá
del ejemplo este no serı́a un buen problema a resolver de forma recursiva.

3Si bien en C las expresiones suelen evaluarse en cualquier orden, en este caso hay un operador || y se garantiza
que se va a evaluar de izquierda a derecha por el cortocircuito (ver 5.5.4).
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21.4. Recursividad de cola

Se define como recursividad de cola (tail recursion, TR) a las funciones recursivas cuya última
cosa que hacen es evaluar el resultado de la llamada recusiva. De los ejemplos implementados
hasta el momento la implementación de factorial lo último que realiza es una multplicación, por
lo tanto no es recursividad de cola, similar pasa con la potencia y similar pasa con la búsqueda
del elemento en el vector partiéndolo al medio.

La implemetación de la búsqueda del elemento sacando de a un elemento por vez podrı́amos
convertirla en recursión de cola simplemente explicitando el caso base que no consideramos:

1 bool contiene(const int v[], size_t n, int elem) {
2 if(n == 0)
3 return false;
4

5 if(v[0] == elem)
6 return true;
7

8 return contiene(v + 1, n - 1, elem);
9 }

Notar que no hay una manera inmediata de reestructurar el código de las otras funciones para
llegar a que el return evalúe únicamente una llamada a función.

¿Por qué son importantes las funciones con recursividad de cola? Porque, aunque no lo
parezcan son casi iterativas. Si la función no hace ninguna cosa más después de llamarse a sı́
misma entonces las variables locales del marco de ejecución local no se vuelven a utilizar.

¿Qué pasa si en vez de generar un nuevo marco de ejecución para la llamada a contiene(
↪→ v + 1, n - 1, elem) de la lı́nea 8 reaprovechamos el marco de la ejecución actual. Sólo
tendremos que actualizar v para que sea v + 1 y n para que sea n + 1. Y si el marco no se
duplica y la función se repite al final, básicamente lo que tenemos es una iteración que va a
romperse únicamente al alcanzar un caso base.

Podrı́amos reescribir esto de forma explı́cita:

1 bool contiene(const int v[], size_t n, int elem) {
2 while (1) {
3 if(n == 0)
4 return false;
5

6 if(v[0] == elem)
7 return true;
8

9 v = v + 1;
10 n = n - 1;
11 elem = elem;
12 }
13 }

Y se ve que tenemos ahora una versión puramente iterativa que hace lo mismo que la versión
recursiva. Hace lo mismo pero ocupando O(1) en memoria en vez de O(n), lo cual no es
irrelevante dado que cuando implementamos esta función dijimos que “no era viable” porque
con vectores de tamaño grande harı́a explotar al stack.

¿Entonces nos interesa la recursividad de cola porque hace inmediato reescribir de forma
iterativa? Para eso programemos iterativo y listo. Por empezar, en el ejemplo de buscar un
elemento en un vector ya habı́amos concluı́do que la recursividad no aportaba nada a la solución
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del problema. Pero por el otro lado lo que todavı́a no mencionamos es que los compiladores
tienen la capacidad de identificar la recursividad de cola.

Cuando prensentamos el tema de CLA dijimos que el GCC tenı́a más de 5000 parámetros,
uno de ellos, -foptimice-sibling-calls, activa lo que se llama optimización de la recursividad
de cola, llamada TRO por sus siglas en inglés (tail recursion optimization). Si bien no es común
utilizar este flag de compilación de forma explı́cita muchos flags se activan de forma implı́cita
al activar otras optimizaciones. Las optimizaciones de velocidad -O2, -O3 y de tamaño -Os
habilitan la TRO en GCC.

Entonces nos interesa la recursividad de cola porque podemos escribir algoritmos recursivos
y dejar que el compilador haga su trabajo e interprete nuestro código como si fuera iterativo4.
En muchos casos esto puede ser más sencillo de pensar o elegante de implementar.

Por ejemplo retomemos la búsqueda binaria (ver 17.3). Hay que decir que la implementación
iterativa de la búsqueda binaria tiene ı́ndices arbitarios, uno empieza en 0, otro en n - 1, el
corte se da cuando prim <= ult, no es inmediato ver de dónde salen esos lı́mites. En realidad
la búsqueda binaria se piensa de forma recursiva: Recibo un vector ordenado, miro el elemento
del medio, en base a eso descarto la mitad del vector y repito el proceso, esto hasta quedarme
sin vector.

Podemos implementar

1 // Devuelve un puntero al elemento o NULL si no lo encuentra.
2 int *busqueda_binaria(int v[], size_t n, int elem) {
3 // Si nos quedamos sin vector el elemento no est á:
4 if(n == 0)
5 return NULL;
6

7 size_t medio = n / 2;
8

9 // Lo encontramos en el medio:
10 if(v[medio] == elem)
11 return v + medio;
12

13 if(v[medio] > elem)
14 // Si est á est á a la izquieda:
15 return busqueda_binaria(v, m - 1, elem);
16 else
17 // Si est á est á a la derecha:
18 return busqueda_binaria(v + m + 1, n - m - 1, elem);
19 }

Es subjetivo si te resulta más fácil de entender la versión iterativa o la versión recursiva del
algoritmo, lo importante es que si en la misma hay recursividad de cola para el compilador son
lo mismo.

Si estás atento habrás notado que la implementación de la búsqueda binaria de la sección 17.3
devolvı́a la posición en el vector mientras que nuestra implementación recursiva devuelve un
puntero, hablaremos sobre eso en la próxima sección.

21.5. Wrappers

Supongamos la siguiente función que suma todos los elementos de un vector de forma
recursiva:

4Valga la aclaración, activar la TRO no necesariamente haga que el compilador identifique y optimice nuestro código,
todas las operaciones que se delegan en el compilador son sugerencias.
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1 int sumar(const int v[], size_t n) {
2 if(n == 0)
3 return 0;
4

5 return v[n - 1] + sumar(v, n - 1);
6 }

En esta función estamos reduciendo el problema de a un elemento por vez quitando el último
elemento del vector. Para compensar el elemento que quitamos lo sumamos a lo que nos
devuelve la llamada recursiva.

Hasta aquı́ no hay nada nuevo, lo que cabe mencionar es que no tenemos recursividad de
cola porque la última expresión que se evalúa antes de hacer el return es una suma.

¿Se puede de alguna manera modificar esta implementación para que lo último que se
realice es la llamada recursiva? Bueno, una forma de hacer esto es subvertir el orden de las
operatorias. La idea serı́a que en vez de tener un caso base que nos devuelva cero y adicionar el
elemento que retiramos luego de llamar a la función, lo que podemos hacer es acumular los
elementos que vamos retirando y hacer que el caso base sea el que devuelva esa cuenta.

Esto serı́a algo ası́:

1 static int _sumar(const int v[], size_t n, int acum) {
2 if(n == 0)
3 return acum;
4

5 return _sumar(v, n - 1, acum + v[n - 1]);
6 }

(En breve explicaremos ese static que apareció.)
Si bien esta función que implementamos hace lo que describimos que querı́amos que hiciera,

esta función no es la función original que tenı́amos. Nosotros querı́amos una función que
sumara los elementos de un vector, y ahora tenemos una función que tiene un parámetro
adicional que no tiene razón de ser en una función que acumula. Es más, ese parámetro tiene
que valer exactamente 0 en la primer llamada para que la acumulación sea correcta, pero dentro
de la función recursiva no tenemos manera de saber si la instancia que se está ejecutando es la
primera de la serie o es una intermedia.

El único que puede invocar a esta función es Alan, y es Alan el que se tiene que encargar de
acomodar los parámetros en función del problema que Bárbara espera resolver:

1 int sumar(const int v[], size_t n) {
2 return _sumar(v, n, 0);
3 }

Ahora bien, ¿es recursiva la función sumar()? Vamos a considerar que la función sumar()
resuelve el problema de forma recursiva, porque utiliza a la función _sumar() que ejecuta una
recursión. Desde la perspectiva de Bárbara que Alan esté usando o no una función auxiliar no
altera el resultado, internamente Alan utiliza recursividad.

La función sumar() es un wrapper, concepto que ya vimos en la sección 8.11.1. Un envoltorio
que se ocupa solamente de cambiarle la cara a una función que está detrás.

Hay muchos problemas de recursividad en los cuales agregar parámetros que no forman
parte del problema hace que la resolución sea mucho más sencilla (independientemente de
si logramos tener recursividad de cola o no). En todos los casos la firma de la función que
ve Bárbara hacia afuera tiene que ser la firma natural del problema en cuestión y es ilógico
exigirle a Bárbara que llame a la función con parámetros adicionales que tienen que valer cosas
concretas. Es Alan el que tiene que encargarse de hacer esos ajustes.
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Cerrando el ejemplo que quedó incompleto de la sección anterior, habı́amos implementado
una búsqueda binaria que en vez de devolver un size_t devolvı́a un int *, ¿cómo se resuelve?
¡wrapper!

1 size_t busqueda_binaria(int v[], size_t n, int elem) {
2 int *p = _busqueda_binaria(v, n, elem); // Esta es la de la

↪→ secci ón anterior renombrada.
3 if(p == NULL) return n;
4

5 return p - v;
6 }

¿Se hubiera podido implementar la versión recursiva para que devolviera el ı́ndice en vez del
puntero? Sı́, y podés pensarla si querés, bastante seguro que va a ser mucho más complicada
que devolver el puntero, que es inmediato, e implementar el wrapper.

Para reforzar cómo agregar parámetros puede simplicarle el trabajo a Alan hagamos otro
ejemplo. Decimos que una cadena es capicúa si se lee igual de atrás para adelante5. Queremos
implementar una función recursiva que nos diga si una cadena es capicúa o no. Los casos base
son sencillos, si la cadena tiene 1 o menos caracteres tiene que ser capicúa, además si el primer
carácter es diferente al último la cadena no puede ser capicúa. En caso contrario sacaremos el
primer y último carácter e invocaremos de forma recursiva. Implementemos esto:

1 bool es_capicua(const char *s) {
2 size_t n = strlen(s);
3

4 if(n <= 1)
5 return true;
6

7 if(s[0] != s[n - 1])
8 return false;
9

10 char aux[n - 1];
11 strncpy(aux , s + 1, n - 2);
12 aux[n - 2] = ’\0’;
13

14 return es_capicua(aux);
15 }

Lo único que podemos decir positivo de esta implementación es que aplica recursividad de
cola... el resto es un espanto. Usa VLAs para cadenas de longitud desconocida (y si no los
usáramos tendrı́amos que usar memoria dinámica), cada llamada tiene que operar un strlen()
y un strnpcy() por lo que el algoritmo terminará siendo O(n2) en tiempo. Es más, hay más
pasos de iteración en estas funciones que llamadas recursivas en el resto de la implementación.
Y, por último, si el compilador no aplicara TRO el algoritmo también serı́a cuadrático en
memoria porque cada marco de ejecución ocupa espacio O(n). Reiteramos: Un espanto.

Mirar cómo cambia la implentación si la función recibe la longitud de la cadena con la que
tiene que tratar:

1 static bool _es_capicua(const char *s, size_t n) {
2 if(n <= 1)
3 return true;

5Si se tratara de una frase de múltiples palabras dirı́amos que es un palı́ndromo, pero en este caso no vamos a
considerar espacios, puntuación, etc.
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4

5 if(s[0] != s[n - 1])
6 return false;
7

8 return _es_capicua(s + 1, n - 2);
9 }

10

11 bool es_capicua(const char *s) {
12 return _es_capicua(s, strlen(s));
13 }

Resuelve el mismo problema con complejidad temporal O(n) y si el compilador aplicara TRO
con O(1) en memoria.

21.6. Técnicas de diseño de algoritmos

En el mundo de los algoritmos y de la solución de problemas la recursividad es una de
tantas técnicas que se emplean para resolverlos.

Los algoritmos recursivos se pueden estudiar mucho más en detalle de lo que se hizo en
esta introducción y es tema de cursos más avanzados.

Ahora bien, el diseño de algoritmos de forma recursiva es una de muchas formas de abordar
problemas que se aplican en la algoritmia. Hay otras técnicas conocidas de resolución de
problemas, en este curso introductorio sólo llegamos a presentar esta, con esto queremos decir
que ni recursividad es la única ni tampoco la más importante, hay diferentes técnicas que se
aplican a diferente tipo de problemas.

Sirvan estas lı́neas para poner esto en perspectiva, al igual que con otros temas, como por
ejemplo el estudio de la complejidad computacional, este curso llega apenas a presentar lo más
superficial sobre el tema.

En el siguiente capı́tulo veremos un par de algoritmos recursivos que superan ampliamente
lo que se puede lograr con algoritmos iterativos.
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Capı́tulo 22

Algoritmos de ordenamiento

22.1. Introducción

En la informática hay muchas ocasiones en la que hay que ordenar datos, incluso a tal punto
de que en España llaman “ordenadores” a las computadoras. Más allá de la etimologı́a las
primeras máquinas que podrı́amos asimilar a computadoras, que surgieron a finales del siglo
XIX, servı́an para sumar y para ordenar. Incluso estas máquinas de sumar y ordenar anteceden
a las computadoras programables y a las computadoras digitales.

Hay múltiples métodos de ordenamiento y no existe un método universal que sea el mejor
para todos los problemas, si no que hay métodos mejores según el tipo de datos que se trate.

En este curso vamos a estudiar cuatro métodos de los que se consideran algoritmos compara-
tivos. Un algoritmo comparativo es aquel que necesita comparar un elemento a con un elemento
b para saber cuál de los dos va antes en el conjunto ordenado. ¿Existen entonces métodos que
pueden ordenar de forma no comparativa? Sı́, si hay información adicional sobre los elementos
pueden plantearse métodos no comparativos. Por ejemplo, si calificáramos parciales con notas
del 1 al 10 y quisiéramos ordenar todos los parciales de la facultad por nota creciente alcanzarı́a
con hacer 10 pilones, uno para cada nota. Repartirı́amos cada uno de los exámenes en el pilón
que le corresponda según la nota y cuando terminemos simplemente apiları́amos los pilones
según nota creciente. Listo. En una sola pasada ordenamos todos los parciales, obtuvimos
un método que ordena, en principio, en O(n). Y, lo más importante, nunca comparamos los
exámenes entre sı́.

En el mundo de los algoritmos comparativos nunca vamos a poder obtener un orden
de complejidad lineal, es más se puede demostrar que lo mejor que se puede lograr con
algoritmos comparativos es O(n log n). Ahora bien, los métodos comparativos sirven para
ordenar cualquier cosa, no algo particular como los parciales que se catalogan en 10 categorı́as
según su nota.

Otra caracterı́stica que puede estudiarse en un método de ordenamiento es si funciona
in-place o no. Los algoritmos in-place pueden ordenar los elementos de un vector sobre el
mismo vector, mediante operaciones sucesivas, literalmente in-place significa “en el lugar”. Los
métodos que no son in-place necesitan memoria auxiliar durante el proceso de ordenado. Esto
es relevante, porque si queremos ordenar datos que consumen toda nuestra memoria, o incluso,
que no podemos poner en memoria, un método que no sea in-place no nos servirá. Por ejemplo,
el método que mencionamos para ordenar parciales, ası́ como lo presentamos, necesita 10 pilas
que eventualmente van a tener todos los elementos del vector original para operar por lo tanto
no es un método in-place.

Vamos a mencionar una última caracterı́stica que es la estabilidad. Cuando ordenamos
partimos de un vector que tiene los elementos en un determinado orden relativo. Después de
ordenar, ¿los elementos que son iguales según el criterio de ordenamiento van a estar en el
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mismo orden en el que estaban en el vector original? Volviendo a nuestro ejemplo, supongamos
que los parciales estaban ordenados según el orden en el que los alumnos entregaron el examen.
Si los apilamos a medida que recorremos los exámenes, los parciales que tengan la misma nota
van a apilarse respetando el orden original. Entonces, el algoritmo ese que mencionamos es
estable. Que un algoritmo sea estable significa que si ordenamos por un criterio y luego por
un criterio diferente no se va a desordenar el primer criterio. Por ejemplo, si ordenáramos los
parciales primero por orden alfabético y luego por nota, todos los que se sacaron 1 van a estar
juntos ordenados por orden alfabético.

En este curso nos limitaremos a dos métodos de ordenamiento iterativos, selección e
inserción, y dos métodos de ordenamiento recursivos, quicksort y mergesort.

22.2. Selección

El método de selección probablemente sea de los más intuitivos de entender. Como en
todos los métodos que vamos a presentar partimos de un vector v de n elementos de tipo
entero. Esto no significa que podamos ordenar otras cosas, si no que queremos hacer foco en
los métodos y no en los datos. El método lo que propone es empezar haciendo una búsqueda
del menor elemento del arreglo. ¿Qué posición deberı́a ocupar ese elemento en el arreglo
ordenado? Obviamente la primera posición. Entonces lo que haremos será intercambiar de
lugar el menor elemento con el elemento que esté en v0. El vector entre v1 y vn−1 todavı́a se
encuentra desordenado, ¿cómo seguimos?, volvemos a hacer una búsqueda de mı́nimo sobre
ese resto de vector y esta vez intercambiaremos el mı́nimo elemento con el de la posición v1. Y
seguiremos haciendo esto hasta que quede un único elemento al final del vector y el vector ya
estará ordenado.

La implementación del ordenamiento por selección es muy sencilla, en primer lugar tenemos
las dos operaciones que mencionamos: Búsqueda de mı́nimo e intercambiar dos elementos de
lugar:

1 // Devuelve un puntero al mı́nimo elemento del vector v.
2 int *minimo(int v[], size_t n) {
3 int *min = &v[0];
4 for(size_t i = 1; i < n; i++)
5 if(v[i] < *min)
6 min = v + i;
7 return min;
8 }
9

10 // Intercambia el contenido de los punteros a y b.
11 void swap(int *a, int *b) {
12 int aux = *a;
13 *a = *b;
14 *b = aux;
15 }

Luego, el método de ordenamiento busca el mı́nimo y lo mueve a la primera posición
reduciendo el vector en uno cada vez:

1 // Ordena el vector v mediante el algoritmo de selecci ón
2 void seleccion(int v[], size_t n) {
3 for(size_t i = 0; i < n - 1; i++) {
4 int *min = minimo(v + i, n - i);
5 swap(v + i, min);
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6 }
7 }

Notar que al inicio de cada paso de la iteración i, el vector en el rango 0. . i se encuentra
ordenado y más aún todos los elementos v[j] tal que j < i ya están en su posición definitiva.
Esa es la invarante de ciclo (ver 12.5) de este método de ordenamiento.

En cuanto a la estabilidad, podemos ver que como nuestra función de mı́nimo para dos
elementos iguales reconoce como menor el primero que haya encontrado, entonces se va a
preservar el orden original entre los elementos de v. Por lo tanto se dice que el método es
estable1.

22.2.1. Eficiencia

Antes de entrar en análisis de eficiencia podemos hacer una observación sobre el método:
¿Qué hace este método de ordenamiento si el vector que recibe ya está ordenado? Notar que al
algoritmo no le importa cómo están los elementos. Si el vector estuviera ordenado el primer
elemento va a ser el menor, pero igualmente hacemos una búsqueda de mı́nimo en todo el
vector. Notar que el método este es ciego a cualquier particularidad del vector, siempre va a
hacer lo mismo. Cuando analicemos la eficiencia veremos que la complejidad va a ser la misma
sin importar ninguna caracterı́stica en el orden previo de los datos.

La eficiencia temporal del método deberı́a ser fácil de ver. Hacemos n− 1 búsquedas de
mı́nimo en un vector. La primera vez sobre los n elementos del mismo, la siguiente sobre
los n− 1 restantes y ası́. Ya nos hemos topado con esta serie cuando presentamos el tema de
complejidad y sabemos que ∑n

i=1 i = n2+n
2 . Entonces temporalmente nuestro método es O(n2).

Podemos hilar un poco más fino en este resultado y hacer una observación, si bien la cantidad
de operaciones de comparación y de iteración es cuadrática, la cantidad de movimientos de
memoria es lineal, porque sólo se hace un movimiento de elementos por iteración. El método
es ineficiente, pero no es muy intensivo en memoria.

En cuanto al comportamiento espacial, el método es in-place, no necesita memoria adicional
para ordenar.

22.3. Inserción

Antes de ir al método de ordenamiento supongamos el siguiente problema. Tenemos un
vector ordenado y queremos agregar un elemento en él. Ahora bien queremos que el vector
siga estando ordenado después de agregar ese elemento, por lo que no podemos agregarlo en
cualquier lugar. Algo que podemos hacer es recorrer el vector para encontrar en qué posición
deberı́a ir el nuevo elemento y luego hacerle lugar para insertarlo, es decir, desplazar todos los
elementos que vayan a continuación una posición a la derecha. Otra cosa que podemos hacer es
poner el elemento nuevo temporariamente al final del vector. Si el elemento es mayor que el
último elemento ya estamos, pero si no, podemos invertir el último (que es el elemento que
agregamos) con el anteúltimo. Ahora bien, puede que el elemento anterior al cual pusimos
nuestro elemento siga siendo mayor en ese caso volveremos a invertir las posiciones y ası́ hasta
que o lleguemos al comienzo o encontremos un elemento menor.

Implementemos esto:

1 // Inserta un elemento en un vector ordenado v de n elementos.
2 // Asume que hay lugar para un elemento más en la memoria.
3 void insertar_ordenado(int v[], size_t n, int elem) {

1Al menos en esta implementación si hubiéramos puesto if(v[i] <= *min) en la lı́nea 5 de la función minimo() ya
no lo serı́a.
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4 size_t i;
5 for(i = n; i > 0 && elem > v[i - 1]; i--)
6 v[i] = v[i - 1];
7 v[i] = elem;
8 }

Notar que si bien dijimos que ı́bamos a poner el elemento nuevo al final, lo pusimos “vir-
tualmente”, en realidad lo que hicimos fue ir desplazando elementos hacia el final hasta que
llegamos a la posición que necesitábamos, habiéndole hecho lugar, y ahı́ insertamos. Una mezcla
entre los dos algoritmos que mencionamos. Pero lo importante de esta implementación es que
encontramos la posición a medida que vamos desplazando, es decir, no tenemos que hacer una
búsqueda previa de dónde terminará nuestro elemento.

El método de ordenamiento por inserción parte de esta misma idea. Tenemos un vector de
n elementos y vamos a ir incorporando al vector los elementos de a uno por vez, haciendo una
inserción ordenada de cada uno de ellos:

1 // Ordena el vector v seg ún el algoritmo de inserci ón
2 void insercion(int v[], size_t n) {
3 for(size_t = 1; i < n; i++)
4 insertar_ordenado(v, i, v[i]);
5 }

(Nos salteamos el primer paso dado que un vector de un único elemento ya está ordenado.)
Notar que en cualquier paso i todos los elementos previos del vector estarán ya ordenados,

esta es su invariante de ciclo, por lo que podemos llamar a la función insertar_ordenado().
El método lo que va haciendo en cada iteración es desplazar el elemento actual tantas veces
hacia el inicio como sean necesarias para que el vector vuelva a estar ordenado.

Otra vez, como cuando encontramos un elemento no mayor interrumpimos el desplazamiento
hacia atrás, el método preservará el orden previo para elementos iguales y será entonces estable.

22.3.1. Eficiencia

Empecemos, igual que antes, preguntándonos qué hace este método con un arreglo ordenado.
Si el arreglo está ordenado, cada vez que incorporemos un elemento al vector ya será más
grande que el último, por lo tanto la inserción ordenada ubicará el elemento al final. Entonces en
una única pasada habremos “ordenado” el vector. El algoritmo de inserción tiene complejidad
temporal O(n) si el vector ya está ordenado. Es decir, no pierde tiempo ordenándolo de nuevo.

Dicho esto, ¿y cómo será el caso general, cuando no podamos decir nada del orden
previo de los elementos del vector? A menos que estemos en el caso anterior, la función
insertar_ordenado() tiene complejidad computacional O(n), no importa si el elemento queda
en la mitad, casi al principio o al final, la cantidad de operaciones será proporcional con el
tamaño del vector en el que insertemos.

Entonces la complejidad del ordenamiento por inserción será la suma de todas las llamadas
a insertar_ordenado() con los diferentes tamaños desde 1 hasta n. Es la misma serie que
presentamos para selección y ya sabemos que es O(n2).

Espacialmente estamos ante otro método in-line, por lo que la complejidad espacial será
O(1).

Notar que, a diferencia del algoritmo de selección, ahora estamos haciendo hasta i movi-
mientos de memoria por iteración por lo que la cantidad de escrituras será cuadrática también.
Es más, si el vector original está ordenado al revés haremos exactamente n2+n

2 escrituras de
memoria.
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22.3.2. ¿Qué pasa en el medio?

En la sección anterior concluı́mos que para vectores ordenados el algoritmo era lineal y
para desordenados era cuadrático. Si recordamos de la primera sección de este capı́tulo dijimos
que lo mejor que se podı́a obtener con un método comparativo era \ log n y para el método de
inserción encontramos dos cotas, una mucho mejor que la ideal y otra mucho peor. ¿Cuándo
convendrá usar este método?

Si el vector está ordenado concluı́mos que en una única pasada el método termina. Ahora
bien, ¿qué pasa si hay un único elemento desordenado? En ese caso haremos, además de
esa pasada que es inherente a recorrer el vector, una pasada de insertar_ordenado() para
acomodar ese elemento desordenado en su lugar. O sea, iteraremos dos veces lineal. ¿Si hubiera
un elemento más desordenado? tres veces lineal, y ası́ hasta que estén todos desordenados y
tendremos n veces lineal, que es el O(n2) que habı́amos concluı́do antes.

Mientras el vector tenga pocos, muy pocos (más especificamente, menos de log2 n) elementos
desordenados, el método será todo lo bueno que puede ser un método comparativo. Si tuviera
más tenderá a ser un método cuadrático.

Antes de cerrar en esta conclusión, todavı́a hay más. En el desarrollo anterior asumimos que
pocos elementos desordenados se tienen que desplazar mucho por el vector. ¿Pero qué pasa si
los elementos en el vector están más o menos ordenados?, es decir, ¿qué pasa si para ubicar a
un elemento en su posición definitiva no tengo que moverlo más que un par de posiciones de
su posición original? En ese caso la complejidad de insertar_ordenado() no será lineal si no
que será una constante, y el orden total volverá a dar lineal.

Hay muchos problemas donde tenemos que ordenar cosas que están más o menos orde-
nadas. Es lo que suele pasar cuando actualizamos datos que están ordenados. Por ejemplo, si
tuviéramos un ranking de cualquier cosa: fortunas, posiciones en un torneo, universidades,
etc. y actualizáramos los datos de los individuos serı́a raro que alguien que en el ranking viejo
estuviera primero en la tabla luego de la actualización pasara a estar último. Lo más probable
es que entre actualización y actualización se quede en el lugar o se mueva un par de posiciones
en uno u otro sentido.

El algoritmo de inserción funciona muy mal para ordenar vectores genéricos, pero tiene un
papel aceptable si ordenamos vectores que tienen pocos elementos desordenados o si ordenamos
vectores que están poco desordenados.

22.4. Mergesort

El mergesort es un método de ordenamiento recursivo. La propuesta del método es partir
el vector a ordenar en dos mitades y ordenar ambas mitades de forma recursiva. Para que el
problema esté completo, el método tiene que juntar los dos vectores ordenados en uno solo
ordenado. La fortaleza del método está puesta en cómo se realiza esta operación de volver a
juntar las mitades ordenadas.

22.4.1. Merge

Se llama merge al algoritmo que une dos vectores ordenados para obtener un nuevo vector
ordenado. ¿Podemos hacer esta operación de forma eficiente, es decir sin volver a ordenar los
vectores?

La idea es la siguiente, si tenemos dos subvectores y queremos juntarlos en un vector, todos
ellos ordenados, el primer elemento del vector tendrá que ser el menor de los elementos de los
subvectores. Ahora bien, si los dos subvectores están ordenados entonces el menor elemento
de cada uno de ellos tendrán que estar al comienzo, por lo que el primer elemento del vector
tiene que ser el primer elemento de uno de los dos subvectores. Si “sacamos” ese elemento
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del subvector que corresponda y lo “pasamos” a la primera posición del vector ahora tenemos
que buscar qué elemento es el que va segundo en el mismo. La situación se vuelve a repetir,
habiendo sacado el elemento más chico ahora el segundo elemento más chico tiene que ser uno
de los que están al comienzo de alguno de los subvectores. Iterativamente iremos sacando el
elemento menor entre el primero de los dos subvectores y pasándolos al vector hasta que no
queden más elementos en alguno de los dos subvectores. Cuando lleguemos a esa situación
todos los elementos que quedan en el subvector que no se haya terminado son mayores que
todos los que están en el vector y además están ordenados, por lo que su ubicación final será al
final del vector.

Implementemos este algoritmo:

1 // Une los dos vectores ordenados a y b y devuelve el vector
↪→ resultante.

2 // El vector resultante mide na + nb.
3 int *merge(const int a[], size_t na, const int b[], size_t nb) {
4 int *r = malloc ((na + nb) * sizeof(int));
5 if(r == NULL) return NULL;
6

7 size_t ia = 0, ib = 0, ir = 0;
8

9 // Iteramos hasta que se termine uno de los dos vectores:
10 while(ia < na && ib < nb) {
11 if(a[ia] < b[ib])
12 // El elemento más chico est á al comienzo del

↪→ subvector a
13 r[ir++] = a[ia++];
14 else
15 // El elemento más chico est á al comienzo del

↪→ subvector b
16 r[ir++] = b[ib++];
17 }
18

19 // Si llegamos ac á es o porque ia == na o porque ib == nb.
20 // Sólo se ejecutar á uno de los siguientes whiles:
21 while(ia < na)
22 r[ir++] = a[ia++];
23

24 while(ib < nb)
25 r[ir++] = b[ib++];
26

27 return r;
28 }

En la implementación los ı́ndices ia, ib e ir sirven para saber el primer elemento de cada
uno de los subvectores y del vector resultado respectivamente. En cada paso de la iteración
incrementamos el ı́ndice de un único subvector. Es importante notar que, si por ejemplo, en
la primera iteración el elemento más chico era el primero del subvector a eso no aporta nada
de información a cuál va a ser el elemento menor de la siguiente iteración, puede ser el de b o
puede ser de nuevo el de a. Incluso podrı́a llegar a pasar que todos los elementos de a sean
menores a los de b, en ese caso se entrará siempre al if y recién cuando se termine la iteración
principal se copiarán todos los elementos de b al final de r.

Lo importante a ver del algoritmo de merge es que podemos realizar la fusión de dos
subvectores ordenados en un nuevo arreglo en una sola pasada sobre ambos arreglos, es decir
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la complejidad temporal del método será O(na + nb) o, lo que es lo mismo, O(nr).
En cuanto a la complejidad espacial, no hay manera de realizar la operación de merge si no

es utilizando un tercer vector, por lo que también la complejidad espacial será O(na + nb).

22.4.2. Mergesort

Habiendo ya resuelto la operación de merge, que nos permite juntar dos arreglos ordenados
en un arreglo entonces podemos implementar el algoritmo del mergesort.

Como estamos partiendo el problema al medio consideraremos como casos bases que el
vector tenga uno o menos elementos, un vector de 0 o 1 elemento ya está ordenado.

Entonces:

1 int *_mergesort(const int v[], size_t n) {
2 if(n <= 1) {
3 int *r = malloc(sizeof(int));
4 memcpy(r, v, n * sizeof(int));
5 return r;
6 }
7

8 int *a = _mergesort(v, n / 2);
9 int *b = _mergesort(v + n / 2, n - n / 2);

10

11 int *r = merge(a, n / 2, b, n - n / 2);
12

13 free(a);
14 free(b);
15 return r;
16 }

Notemos que esta implementación es incompleta, se omiten las validaciones de memoria para
no complejizarla. Notar además que en el caso base estamos siempre pidiendo memoria para un
entero, esto es porque si hiciéramos malloc(n * sizeof(int)) devolverı́a NULL cuando n = 0,
lo que sumarı́a casos adicionales a sumar en las validaciones si implementáramos completo lo
referido a la memoria.

¿Por qué pusimos un guión bajo en _mergesort()? Porque lo esperable de una función
de ordenamiento es que ordene sobre el mismo vector que recibe y esta implementación está
devolviendo un vector nuevo. Lo razonable serı́a implementar un wrapper:

1 // Ordena el vector v por el algoritmo de mergesort
2 void mergesort(int v[], size_t n) {
3 int *r = _mergesort(v, n);
4 memcpy(r, v, n * sizeof(int));
5 free(r);
6 }

De la implementación se hace evidente que el método no es in-place.

Sin pedidos de memoria

Sin cambiar la esencia del algoritmo se pueden reimplementar las funciones anteriores para
que las mismas reciban un vector auxiliar para operar los resultados. En este caso la idea es que
los resultados se vayan ya escribiendo en la posición definitiva dentro del vector. Esto implica
que en vez de realizar una recursión clásica pasándole subvectores a las funciones, lo que vamos
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a hacer es pasarle los ı́ndices de inicio y fin de los mismos. Además las funciones van a conocer
que un subvector es la partición al medio de un vector consecutivo.

El algoritmo de merge entonces será:

1 // Une las mitades v[desde ]..v[medio] y v[medio ]..v[desde] y
↪→ guarda el resultado en v[desde ]..v[desde].

2 // Utiliza a aux como vector auxiliar en el proceso.
3 void merge(int v[], size_t desde , size_t medio , size_t hasta , int

↪→ aux []) {
4 size_t na = medio - desde;
5 size_t nb = hasta - medio;
6

7 size_t ia = desde;
8 size_t ib = medio + 1;
9 size_t ir = desde;

10

11 while(ia < na && ib < nb)
12 if(v[ia] < v[ib])
13 aux[ir++] = v[ia++];
14 else
15 aux[ir++] = v[ib++];
16

17 while(ia < na)
18 aux[ir++] = v[ia++];
19 while(ib < nb)
20 aux[ir++] = v[ib++];
21

22 for(ir = desde; ir < hasta; ir++)
23 v[ir] = aux[ir];
24 }

En esta implementación unimos sobre el vector auxiliar y al final copiamos el vector ordenado
sobre su ubicación dentro de la memoria original.

Luego el mergesort se implementará:

1 void _mergesort(int v[], size_t desde , size_t hasta , int aux[]) {
2 if(hasta <= desde)
3 return;
4

5 size_t medio = (desde + hasta) / 2;
6

7 _mergesort(v, desde , medio , aux);
8 _mergesort(v, medio + 1, hasta , aux);
9

10 merge(v, desde , medio , hasta , aux);
11 }
12

13 void mergesort(int v[], size_t n) {
14 int *aux = malloc(n * sizeof(int));
15 _mergesort(v, 0, n, aux);
16 free(aux);
17 }
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Notar que si bien pudimos reducir la cantidad de pedidos de memoria seguimos necesitando
hacer un pedido. Esto es porque el método no funciona in-place. Podrı́amos omitir todos los pe-
didos de memoria si le pidiéramos a Bárbara que nos pase un buffer de tamaño correspondiente,
en ese caso la firma del wrapper podrı́a ser void mergesort(int v[], size_t n, int aux
↪→ []).

22.4.3. Eficiencia

El cómputo de la complejidad temporal del método de mergesort es un poco más complejo
que el de selección e inserción dado que se trata de un método recursivo. Al ser recursivo el
tiempo de una instancia va a depender de lo que dependan sus subinstancias por lo que nos
quedará una ecuación de recurrencia que tendremos que resolver.

Empecemos llamando T(n) al tiempo de llamar a mergesort con un vector de tamaño n.
Recordemos la estructura general del algoritmo: Si es el caso base retorno el mismo vector
recibido. Si no llamo a mergesort con las dos mitades del vector y luego hago el merge entre
esas dos mitades.

Entonces para el caso general T(n) = 2T(n/2) + an dado que tengo dos veces el tiempo
que lleve llamar a mergesort con vectores de la mitad del tamaño (T(n/2)) y luego la llamada
a merge, que para dos vectores de tamaño n/2 tiene complejidad O(n), por lo que habrá
una cantidad de tiempo a multiplicando a la cantidad n. Esta es una ecuación de recurrencia,
está definida en términos de sı́ misma. Y, como vimos cuando aprendimos recursividad, tiene
que haber un caso particular que termine la recurrencia si no será infinita. Sabemos que
T(0) = T(1) = b, porque cuando llegamos a un caso base hacemos una operación que ya no
depende del tamaño genérico n.

Entonces tenemos que resolver la recurrencia:

T(n) =
{

2T(n/2) + an si n > 1,
b si n ≤ 1.

Vamos a empezar haciendo la misma asunción que hicimos cuando resolvimos la compleji-
dad de la búsqueda binaria (sección 17.3): Supongamos que n = 2k, otra vez, una cantidad que
podemos dividir por 2 muchas veces sin que aparezcan cantidades impares.

Entonces en el primer paso de nuestra recurrencia tenemos T(n) = T
(

2k
)
= 2T

(
2k−1

)
+

a2k. Ahora podemos desarrollar T
(

2k−1
)

según lo que tenemos en la recurrencia, entonces

T(n) = 2
(

2T
(

2k−2
)
+ a2k−1

)
+ a2k = 22T

(
2k−2

)
+ 2a2k.

Podemos seguir haciendo esto k veces, en el paso k obtendremos T(n) = 2kT
(

2k−k
)
+ ka2k.

Ahora bien como 2k−k = 20 = 1 entonces T
(

2k−k
)
= T(1) = b, entonces nuestra ecuación

queda T(n) = 2kb + ka2k. ¿De dónde salió k?, salió de que asumimos que n = 2k =⇒ k = log2 n.
Entonces podemos hacer ese último reemplazo para obtener la ecuación en términos de n:

T(n) = nb + log2(n)an.

En esta ecuación tenemos un término lineal (nb) y un término que es un producto entre n y el
logaritmo de n, este último término es mayor, por lo que si aplicamos notación O podemos
descartar el término lineal y la constante a obteniendo entonces que T(n) = O(n log n).

Más allá del desarrollo analı́tico podemos visualizar el resultado de forma gráfica. Empeza-
mos con un problema de tamaño n. Cada vez que lo subdividimos tendremos dos problemas
de tamaño n/2, que a su vez dividirán en 4 problemas de tamaño n/4 y luego en 8 de tamaño
n/8 hasta que no se pueda partir más. La cantidad de veces que podremos partir será log2 n, ası́
que terminaremos después de esa cantidad de divisiones. A su vez, el problema de tamaño n se
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resolverá en O(n). Del mismo modo tenemos dos problemas de tamaño n/2 que sumados nos
vuelven a dar O(n) y luego tenemos 4 de tamaño n/4 donde obtendremos lo mismo. Es decir,
en cada subdivisión vamos a operar con particiones del vector que siempre suman n elementos
y podemos particionar log2 n, lo cual implica una solución en tiempo O(n log n).

Entonces nuestro algoritmo de mergesort será O(n log n) en tiempo y O(n) en memoria. Si
recordamos del inicio de este capı́tulo, se podı́a demostrar que ese orden temporal es el mejor
posible para algoritmos comparativos, por lo que no vamos a encontrar ningún algoritmo que
pueda superar a mergesort para el caso general.

Puede verse que, por ejemplo al igual que en selección, al algoritmo de mergesort no le
importa el contenido del vector, es decir, parte al medio tantas veces como puede y luego va
efectuando la operación de merge. Por lo que no hay un mejor y un peor caso de este algoritmo,
siempre vamos a obtener complejidad O(n log n).

22.4.4. Merge más allá de mergesort

Si bien el disparador para enseñar el algoritmo de merge en este curso es que es lo que
permite implementar el ordenamiento mergesort, la realidad es que merge por sı́ solo es un
algoritmo muy útil. El poder de merge se da en que se puede sintetizar el contenido de dos
vectores diferentes en apenas una pasada por los elementos de ambos, por lo que permite
resolver de forma lineal operaciones que a priori no lo parecen.

Por dar un ejemplo, supongamos que tenemos dos conjuntos de elementos A y B, por
sencillez de tipo entero. Cada conjunto está representado en un vector y los elementos de dicho
vector están ordenados. Ahora bien queremos encontrar el conjunto intersección R = A ∩ B.

Una aproximación ingenua a este problema caerı́a en la definición de intersección de
conjuntos, un elemento x estará en el conjunto intersección sólo si x ∈ A∧ x ∈ B. Si quisiéramos
operar esto podrı́amos verificar si cada uno de los elementos ai de A pertenece al conjunto B,
entonces tendrı́amos algo ası́ como:

1 // Devuelve a intersecci ón b, y la dimensi ón de este conjunto en
↪→ nr.

2 int *interseccion(const int a[], size_t na, const int b[], size_t
↪→ nb, size_t *nr) {

3 // El conjunto ocupar á como máximo min(na, nb)
4 int *r = malloc ((na < nb ? na : nb) * sizeof(int));
5 if(r == NULL) return NULL;
6

7 *nr = 0;
8

9 for(size_t i = 0; i < na; i++)
10 if(pertenece(b, nb, a[i]))
11 r[(*nr)++] = a[i];
12

13 // Podr ı́amos redimensionar r a *nr con realloc si quisi é ramos.
14

15 return r;
16 }

Deberı́a verse que iteramos na veces haciendo una llamada a la función que nos dice si ai ∈ B.
¿Cuál es el orden de complejidad de determinar si un elemento está en B? Si no supiéramos

nada sobre B deberı́amos hacer una búsqueda lineal que será O(nb). Pero empezamos plan-
teando el problema diciendo que ambos vectores estaban ordenados por lo que podemos hacer
una búsqueda binaria que podemos resolver en O(log nb).
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El orden del algoritmo de intersección será entonces O(na log nb) donde si asumimos que
ambos vectores tienen tamaños comparables podemos decir que es O(n log n), nada mal.2

Ahora bien si estamos hablando del problema de la intersección de vectores ordenados en
una sección que se llama “merge más allá del mergesort” será porque merge tiene algo que
aportarnos al respecto de este problema.

Razonemos un poco, si los elementos de A y los de B se encuentran ordenados hay dos
casos a considerar sobre ese primer elemento. Si tenemos que a0 = b0 esto quiere decir que
ese elemento está en ambos conjuntos y por lo tanto tiene que formar parte del conjunto
intersección. En cambio, si son diferentes uno de ellos tiene que ser menor que el otro. El que
sea más chico no puede nunca estar en el otro conjunto porque si no estarı́a primero, entonces
ese elemento puede descartarse dado que no va a ser parte del conjunto intersección. Podemos
aplicar esta lógica hasta que se agoten los elementos de uno de los dos conjuntos. Cuando se
agoten los elementos de un conjunto ya no importan los que queden en el otro, no hay forma
que sean parte del conjunto intersección.

Juntando estas ideas podemos programar:

1 int *interseccion(const a[], size_t na, const b[], size_t nb,
↪→ size_t *nr) {

2 int *r = malloc ((na < nb ? na : nb) * sizeof(int));
3 if(r == NULL) return NULL;
4

5 *nr = 0;
6 size_t ia = 0, ib = 0;
7 while(ia < na && ib < nb) {
8 if(a[ia] == b[ib]) {
9 r[(*nr)++] = a[ia++]; // Da igual si tomamos este o

↪→ b[ib]: son iguales.
10 ib++; // ¿Qu é pasar ı́a si no

↪→ incrementamos ib?: Nada. Pensalo
11 }
12 else if(a[ia] < b[ib])
13 ia++;
14 else
15 ib++;
16 }
17

18 return r;
19 }

No es de sorprendernos que si planteamos la idea de merge entonces el algoritmo de intersección
nos haya quedado como un único recorrido sobre los dos vectores, el orden de complejidad será
entonces O(na + nb), mejor que el resultado que habı́amos obtenido para la implementación
ingenua.

Ahora bien, podrı́amos decir que sólo podemos aplicar el algoritmo de merge si los vectores
están previamente ordenados, es cierto. Pero si decimos eso tenemos que ver que si los vectores
no estuvieran ordenados tampoco podrı́amos hacer la búsqueda binaria en el algoritmo ingenuo
y obtendrı́amos una complejidad O(n2), totalmente inaceptable. Si los vectores estuvieran
desordenados entonces serı́a más eficiente primero ordenarlos por un método como mergesort
y después computar su intersección, ahora sı́, con cualquiera de los dos métodos, total ya no
podremos mejorar el O(n log n) que gastamos en el ordenamiento.

2Y más que decir que tienen tamaños comparables, nos convendrı́a fijarnos cuál de los dos vectores es el más corto e
interar sobre los elementos de ese que son menos.
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No lo mencionamos previamente pero si representamos los conjuntos mediante vectores
ordenados deberı́amos garantizar que el resultado R también esté ordenado y puede verse que
ambos métodos que propusimos lo verifican. También tendrı́a sentido que no hubiera elementos
repetidos en ninguno de los vectores, cosa que si se cumple en A y A se va a cumplir también
en R para ambos métodos.

Esta implementación de la intersección que planteamos utilizando la lógica de merge puede
generalizarse para otras operaciones de pertenencia. En todos los casos podemos establecer
primero una cota de la cantidad máxima de elementos va a tener el resultado final, y en todos
los casos podremos decidir qué hacer según la relación entre los primeros elementos y qué
hacer con el resto del vector al terminar la iteración principal. Sin ir más lejos la implementación
original de merge se parece mucho a la unión entre dos conjuntos, con el detalle de que si
hay elementos en ambos conjuntos estarán repetidos en el resultado, ¿cómo se modificarı́a la
implementación para no incluirlos? Otras operaciones que podemos hacer con la lógica del
merge es, por ejemplo, encontrar todos los elementos de A que no estén en B, etc.

22.5. Quicksort

Llegamos al último método que vamos a presentar en este curso, el método de quicksort.
Este, al igual que mergesort, también es un método de ordenamiento recursivo.

La idea del quicksort consiste en empezar eligiendo un elemento arbitrario del vector
(el primero, el último, el del medio, alguno, ya lo discutiremos más adelante) denominado
pivote. El pivote se utilizará como referencia para construir dos subvectores: Uno con todos
los elementos menores al pivote y otro con todos los elementos mayores al pivote. Luego de
forma recursiva se ordenarán ambos subvectores. A diferencia del mergesort donde la vuelta
de la llamada recursiva no era evidente si ahora tenemos un subvector ordenado con todos
los elementos menores al pivote y otro subvector con todos los elementos mayores también
ordenado es evidente que el vector resultante tendrá que ser la concatenación de los elementos
menores, el pivote y los elementos mayores.

Entonces la implementación será:

1 void quicksort(int v[], size_t n) {
2 if(n <= 1)
3 return;
4

5 // Elecci ón de un pivote:
6

7 size_t npivote = n / 2; // Elegimos de pivote el del medio ,
↪→ es arbitario.

8 int pivote = v[npivote ];
9

10 // Partici ón en elementos menores y mayores:
11

12 int *menores = malloc ((n - 1) * sizeof(int));
13 int *mayores = malloc ((n - 1) * sizeof(int));
14

15 size_t nmenores = 0; nmayores = 0;
16 for(size_t i = 0; i < n; i++) {
17 if(i == npivote)
18 continue;
19

20 if(v[i] < pivote)
21 menores[nmenores ++] = v[i];
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22 else
23 mayores[nmayores ++] = v[i];
24 }
25

26 // Ordenamos recursivamente menores y mayores:
27

28 quicksort(menores , nmenores);
29 quicksort(mayores , nmayores);
30

31 // Concatenamos menores + pivote + mayores:
32

33 memcpy(v, menores , nmenores * sizeof(int));
34 v[nmenores] = pivote;
35 memcpy(v + nmenores + 1, mayores , nmayores * sizeof(int));
36

37 free(menores);
38 free(mayores);
39 }

Esta implementación es literalmente el algoritmo que se explicó. Para estar completa habrı́a
que agregar las validaciones de memoria que se omitieron.

Como se puede ver, estamos teniendo que consumir n− 1 de memoria en cada llamada
para los subvectores de elementos menores y mayores. Nuestra implementación no es in-place.

22.5.1. Eficiencia

Antes de analizar la complejidad del algoritmo intentemos entender la idea de la reducción
del problema. En cada llamada recursiva estamos sacando un elemento del vector, que es el
pivote, por lo que los subvectores que ordenamos recursivamente tienen un elemento menos.
Pero del capı́tulo de recursividad nos deberı́a haber quedado en claro que sacar un elemento
de un vector no conlleva de por sı́ a una buena solución recursiva.

La idea fuerte de reducción del quicksort está en que si tenemos un buen criterio para elegir
el pivote esperarı́amos que la cantidad de elementos menores a él sea similar a la cantidad de
elementos mayores a él. Es decir, reduzcamos el problema en dos mitades.

Esto que parece ser un objetivo simple no es fácil de garantizar en la práctica partiendo
de la base de que tenemos un vector de n elementos desordenados y no podemos dedicar un
esfuerzo computacional a encontrar el pivote tal que sea la mediana del conjunto.

Para entender cómo afecta el pivote pensemos algunos casos extremos. Supongamos que
elegimos como pivote a v0, el primer elemento del vector. Si el vector estuviera ordenado, ¿qué
pasarı́a? Es evidente ver que si el vector está ordenado entonces v0 es el menor elemento del
vector, por lo tanto todos los demás elementos serán mayores. Entonces en vez de reducir
el problema en dos subproblemas de tamaño n−1

2 resulta que resolvimos el problema en un
subproblema de tamaño 0 y otro subproblema de tamaño n− 1 y como el vector está ordenado
a cada llamada recursiva va a pasarle lo mismo. Si cada llamada recursiva reduce el problema
en un elemento y para armar el subvector necesita iterar todos los elementos la complejidad
de cada llamada individual será O(n) y habrá n llamadas por lo que estaremos ante un caso
O(n2). Esto mismo se repetirá si eligiéramos como pivote el último elemento o si el vector
está ordenado al revés. Siempre que no queden balanceadas las dos mitades estaremos en
complejidades cuadráticas.

El problema es dependiente de dos cosas, una es de la elección del pivote y la otra es de cuál
es el orden de los datos. Podés pensar que una implementación como la que hicimos, donde
tomamos de pivote al elemento del medio resuelve el problema. Si bien es cierto que en el
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caso de que el vector esté ordenado tomar el elemento central como pivote va a garantizar que
los subvectores sean justo de la mitad del tamaño, esto no necesariamente sea ası́ para el caso
genérico de un vector desordenado, que a fin de cuentas será el tipo de vectores que querremos
ordenar. Hay múltiples técnicas para elegir el mejor pivote de diverso grado de complejidad y
no vamos a profundizar en ninguna de ellas en este curso.

Volviendo al tema de la eficiencia, el peor caso es cuadrático, ¿pero cuánto será el mejor
caso?

Si cada vez que partimos en menores y mayores cada uno de estos tiene la mitad (menos
uno) del problema original, y si el pre y postprocesamiento de los datos es lineal, entonces
vamos a estar ante la misma ecuación de recurrencia del mergesort y sabemos que eso resulta
en complejidad O(n log n).

No perdamos de vista que, incluso con la mejor elección del pivote, siempre podemos recibir
un vector ordenado de una forma patológica tal que las particiones terminen desbalanceadas
y quedemos del lado cuadrático. Ası́ y todo, podemos decir que en promedio el quicksort se
comporta O(n log n).

22.5.2. In-place

Si bien cuando presentamos el algoritmo dijimos que nuestra implementación no era in-
place eso no significa que no pueda implementarse una que lo sea. Presentamos la versión que
utiliza vectores auxiliares porque es la implementación natural que surge de la descripción del
problema. Es decir es una solución intuitiva para el algoritmo propuesto.

La idea de la implementación in-place es lograr realizar la separación entre los elementos
menores y los mayores sobre el mismo vector, sin utilizar memoria auxiliar.

¿Cómo podemos lograr esto? La idea es pensar en el vector como si tuviera tres secciones:
Al principio del vector los elementos menores al pivote, al final del vector los elementos más
grandes y en el medio del vector los elementos que todavı́a no clasificamos entre menores y
mayores. Cuando el algoritmo comienza todos los vectores pertenecen a la última categorı́a,
no sabemos qué son. A medida que vamos avanzando con la clasificación iremos dejando al
comienzo los elementos menores y al final los elementos mayores, hasta que clasifiquemos a
todos.

La idea es ası́:

1 // Divide a v en dos subvectores , devuelve la posici ón del pivote.
2 size_t clasificar(int v[], size_t n) {
3 size_t npivote = n / 2; // Arbitrariamente elegimos el del

↪→ medio , otra vez.
4 int pivote = v[npivote ];
5

6 // Guardamos el pivote al final temporariamente:
7 swap(v + npivote , v + n - 1);
8

9 size_t imenores = 0; // Los menores estar án entre 0..
↪→ imenores

10 size_t imayores = n - 2; // Los mayores estar án entre
↪→ imayores ..n-2.

11 while(imenores < imayores) {
12 if(v[imenores] < pivote)
13 // Si el primer elemento despu és del bloque de menores

↪→ es menor que el pivote , ampliamos el bloque de
↪→ menores:

14 imenores ++;
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15 else {
16 // En cambio si no es menor lo mandamos al bloque de

↪→ mayores:
17 swap(v + imenores , v + imayores);
18 imayores --;
19 }
20 }
21

22 // Al terminar la iteraci ón todos los menores est án al
↪→ comienzo , le siguen los mayores y en la ú ltima posici ón
↪→ est á el pivote.

23 // La iteraci ón termina cuando imenores == imayores.
24

25 // Pero el pivote tiene que estar justo despu és de los menores
↪→ :

26 swap(v + imenores , v + n - 1);
27 return imenores;
28 }

Más allá de la implementación y los detalles, ¿te das cuenta qué tiene de problemática la idea
de clasificar de esta manera sobre el mismo vector intercambiando elementos del principio con
el final? Es la única propiedad de clasificación de algoritmos de ordenamiento que mencionamos
en todos los demás métodos pero omitimos cuando hablamos del quicksort: Desordena el orden
relativo de los elementos originales. Entonces el quicksort implementado sobre esta función de
clasificación no será estable3.

Teniendo implementada esta clasificación que nos divide a v en los dos subvectores entonces
podemos implementar el método de ordenamiento:

1 void quicksort(int v[], size_t n) {
2 if(n <= 1)
3 return;
4

5 size_t npivote = clasificar(v, n);
6

7 quicksort(v, npivote - 1); // Ordenamos los
↪→ menores al pivote

8 quicksort(v + npivote + 1, n - npivote); // Ordenamos los
↪→ mayores al pivote.

9 }

¿Falta algo al final? No, no falta nada. Como la función de clasificación nos dejó los subvectores
en su posición relativa al pivote la llamada recursiva trabaja en el lugar definitivo. Literalmente
eso es lo que significa in-place.

Esta nueva versión presentada tiene una complejidad espacial O(1), en contrapartida
perdimos la estabilidad.

22.6. Resumen

Hagamos una comparativa de los 4 métodos que presentamos:

3A diferencia del quicksort que implementamos antes que preservaba los órdenes.
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22.6. RESUMEN CAPÍTULO 22. ALGORITMOS DE ORDENAMIENTO

Método Mejor caso Caso promedio Peor caso In-place Estable
Selección O(n2) O(n2) O(n2) Sı́ Sı́
Inserción O(n) O(n2) O(n2) Sı́ Sı́
Mergesort O(n log n) O(n log n) O(n log n) No Sı́

Quicksort (I) O(n log n) O(n log n) O(n2) No Sı́
Quicksort (II) O(n log n) O(n log n) O(n2) Sı́ No

No vamos a volver a mencionar los puntos fuertes y débiles de cada uno porque para eso ya
está el capı́tulo. De todos modos ahora que tenemos todos los métodos juntos para compararlos,
¿considerás que hay uno que sea mejor que los otros tres? Tomate un tiempo para pensar la
respuesta.

En la sección 8.11.1 vimos que la <stdlib.h> ya trae programado un método para ordenar
arreglos. Esta función se llama qsort() que no es otra cosa que una abreviatura de quicksort.
¿Es el método que elegiste en el párrafo anterior?, ¿se te ocurre cuál fue el criterio para haber
elegido ese método?

Probablemente esta sea una de las mejores ideas para cerrar este texto. En buena parte
de la ingenierı́a no existen soluciones universales si no que siempre estamos ante soluciones
de compromiso. Sı́ existen soluciones que no aportan nada bueno, pero generalmente no hay
una solución ganadora que cubra todos los aspectos. En este caso a la hora de implementar
una función de biblioteca ganó la robustez de una solución que no necesita utilizar memoria
dinámica, incluso sacrificando estabilidad y corriendo el riesgo de degenerar a órdenes de
complejidad cuadráticos. Una función de biblioteca que intente ordenar un vector y requiera
duplicar la memoria o, peor aún, falle es inaceptable. Es incluso inaceptable contrastada con
el riesgo de en algunos casos tardar tiempos absurdos. No hay una sola forma de resolver
los problemas, hay soluciones para distintos contextos y el arte es desarrollar el criterio que
permita elegir la mejor solución para el que nos toca.
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